##// END OF EJS Templates
update docs to reflect XDG support, new ~/.config/ipython default
update docs to reflect XDG support, new ~/.config/ipython default

File last commit:

r2345:cf784db2
r3351:74550047
Show More
pidigits.py
144 lines | 3.7 KiB | text/x-python | PythonLexer
"""Compute statistics on the digits of pi.
This uses precomputed digits of pi from the website
of Professor Yasumasa Kanada at the University of
Tokoyo: http://www.super-computing.org/
Currently, there are only functions to read the
.txt (non-compressed, non-binary) files, but adding
support for compression and binary files would be
straightforward.
This focuses on computing the number of times that
all 1, 2, n digits sequences occur in the digits of pi.
If the digits of pi are truly random, these frequencies
should be equal.
"""
# Import statements
from __future__ import division, with_statement
import numpy as np
from matplotlib import pyplot as plt
# Top-level functions
def compute_one_digit_freqs(filename):
"""
Read digits of pi from a file and compute the 1 digit frequencies.
"""
d = txt_file_to_digits(filename)
freqs = one_digit_freqs(d)
return freqs
def compute_two_digit_freqs(filename):
"""
Read digits of pi from a file and compute the 2 digit frequencies.
"""
d = txt_file_to_digits(filename)
freqs = two_digit_freqs(d)
return freqs
def reduce_freqs(freqlist):
"""
Add up a list of freq counts to get the total counts.
"""
allfreqs = np.zeros_like(freqlist[0])
for f in freqlist:
allfreqs += f
return allfreqs
def compute_n_digit_freqs(filename, n):
"""
Read digits of pi from a file and compute the n digit frequencies.
"""
d = txt_file_to_digits(filename)
freqs = n_digit_freqs(d, n)
return freqs
# Read digits from a txt file
def txt_file_to_digits(filename, the_type=str):
"""
Yield the digits of pi read from a .txt file.
"""
with open(filename, 'r') as f:
for line in f.readlines():
for c in line:
if c != '\n' and c!= ' ':
yield the_type(c)
# Actual counting functions
def one_digit_freqs(digits, normalize=False):
"""
Consume digits of pi and compute 1 digit freq. counts.
"""
freqs = np.zeros(10, dtype='i4')
for d in digits:
freqs[int(d)] += 1
if normalize:
freqs = freqs/freqs.sum()
return freqs
def two_digit_freqs(digits, normalize=False):
"""
Consume digits of pi and compute 2 digits freq. counts.
"""
freqs = np.zeros(100, dtype='i4')
last = digits.next()
this = digits.next()
for d in digits:
index = int(last + this)
freqs[index] += 1
last = this
this = d
if normalize:
freqs = freqs/freqs.sum()
return freqs
def n_digit_freqs(digits, n, normalize=False):
"""
Consume digits of pi and compute n digits freq. counts.
This should only be used for 1-6 digits.
"""
freqs = np.zeros(pow(10,n), dtype='i4')
current = np.zeros(n, dtype=int)
for i in range(n):
current[i] = digits.next()
for d in digits:
index = int(''.join(map(str, current)))
freqs[index] += 1
current[0:-1] = current[1:]
current[-1] = d
if normalize:
freqs = freqs/freqs.sum()
return freqs
# Plotting functions
def plot_two_digit_freqs(f2):
"""
Plot two digits frequency counts using matplotlib.
"""
f2_copy = f2.copy()
f2_copy.shape = (10,10)
ax = plt.matshow(f2_copy)
plt.colorbar()
for i in range(10):
for j in range(10):
plt.text(i-0.2, j+0.2, str(j)+str(i))
plt.ylabel('First digit')
plt.xlabel('Second digit')
return ax
def plot_one_digit_freqs(f1):
"""
Plot one digit frequency counts using matplotlib.
"""
ax = plt.plot(f1,'bo-')
plt.title('Single digit counts in pi')
plt.xlabel('Digit')
plt.ylabel('Count')
return ax