##// END OF EJS Templates
Updated the multiengine and task interface documentation....
Updated the multiengine and task interface documentation. The multiengine interface documentation is in very good condition. The task interface documentation is in OK condition. The main problem is that the task documentation had fallen very out of date. Rather than trying to update all of it, I moved the old task documentation to a file (docs/source/parallel/parallel_task_old.txt) and started a new shorter task documentation that is fully up to date. This should get user's started with the new stuff. But, we do need to write more complete task interface docs.

File last commit:

r1678:75e7964c
r1678:75e7964c
Show More
parallel_task.txt
93 lines | 4.0 KiB | text/plain | TextLexer
.. _paralleltask:
==========================
The IPython task interface
==========================
.. contents::
The task interface to the controller presents the engines as a fault tolerant, dynamic load-balanced system or workers. Unlike the multiengine interface, in the task interface, the user have no direct access to individual engines. In some ways, this interface is simpler, but in other ways it is more powerful.
Best of all the user can use both of these interfaces running at the same time to take advantage or both of their strengths. When the user can break up the user's work into segments that do not depend on previous execution, the task interface is ideal. But it also has more power and flexibility, allowing the user to guide the distribution of jobs, without having to assign tasks to engines explicitly.
Starting the IPython controller and engines
===========================================
To follow along with this tutorial, you will need to start the IPython
controller and four IPython engines. The simplest way of doing this is to use
the :command:`ipcluster` command::
$ ipcluster -n 4
For more detailed information about starting the controller and engines, see
our :ref:`introduction <ip1par>` to using IPython for parallel computing.
Creating a ``TaskClient`` instance
=========================================
The first step is to import the IPython :mod:`IPython.kernel.client` module
and then create a :class:`TaskClient` instance::
In [1]: from IPython.kernel import client
In [2]: tc = client.TaskClient()
This form assumes that the :file:`ipcontroller-tc.furl` is in the
:file:`~./ipython/security` directory on the client's host. If not, the
location of the ``.furl`` file must be given as an argument to the
constructor::
In[2]: mec = client.TaskClient('/path/to/my/ipcontroller-tc.furl')
Quick and easy parallelism
==========================
In many cases, you simply want to apply a Python function to a sequence of objects, but *in parallel*. Like the multiengine interface, the task interface provides two simple ways of accomplishing this: a parallel version of :func:`map` and ``@parallel`` function decorator. However, the verions in the task interface have one important difference: they are dynamically load balanced. Thus, if the execution time per item varies significantly, you should use the versions in the task interface.
Parallel map
------------
The parallel :meth:`map` in the task interface is similar to that in the multiengine interface::
In [63]: serial_result = map(lambda x:x**10, range(32))
In [64]: parallel_result = tc.map(lambda x:x**10, range(32))
In [65]: serial_result==parallel_result
Out[65]: True
Parallel function decorator
---------------------------
Parallel functions are just like normal function, but they can be called on sequences and *in parallel*. The multiengine interface provides a decorator that turns any Python function into a parallel function::
In [10]: @tc.parallel()
....: def f(x):
....: return 10.0*x**4
....:
In [11]: f(range(32)) # this is done in parallel
Out[11]:
[0.0,10.0,160.0,...]
More details
============
The :class:`TaskClient` has many more powerful features that allow quite a bit of flexibility in how tasks are defined and run. The next places to look are in the following classes:
* :class:`IPython.kernel.client.TaskClient`
* :class:`IPython.kernel.client.StringTask`
* :class:`IPython.kernel.client.MapTask`
The following is an overview of how to use these classes together:
1. Create a :class:`TaskClient`.
2. Create one or more instances of :class:`StringTask` or :class:`MapTask`
to define your tasks.
3. Submit your tasks to using the :meth:`run` method of your
:class:`TaskClient` instance.
4. Use :meth:`TaskClient.get_task_result` to get the results of the
tasks.
We are in the process of developing more detailed information about the task interface. For now, the docstrings of the :class:`TaskClient`, :class:`StringTask` and :class:`MapTask` classes should be consulted.