##// END OF EJS Templates
only sort small dicts and sets in lib.pretty...
only sort small dicts and sets in lib.pretty The sorting caused performance problems when displaying large collections, even when the result would be truncated.

File last commit:

r17122:72cff7fe
r18457:7aba3f1e
Show More
exporter.py
276 lines | 9.7 KiB | text/x-python | PythonLexer
"""This module defines a base Exporter class. For Jinja template-based export,
see templateexporter.py.
"""
#-----------------------------------------------------------------------------
# Copyright (c) 2013, the IPython Development Team.
#
# Distributed under the terms of the Modified BSD License.
#
# The full license is in the file COPYING.txt, distributed with this software.
#-----------------------------------------------------------------------------
#-----------------------------------------------------------------------------
# Imports
#-----------------------------------------------------------------------------
from __future__ import print_function, absolute_import
# Stdlib imports
import io
import os
import copy
import collections
import datetime
# IPython imports
from IPython.config.configurable import LoggingConfigurable
from IPython.config import Config
from IPython.nbformat import current as nbformat
from IPython.utils.traitlets import MetaHasTraits, Unicode, List
from IPython.utils.importstring import import_item
from IPython.utils import text, py3compat
#-----------------------------------------------------------------------------
# Class
#-----------------------------------------------------------------------------
class ResourcesDict(collections.defaultdict):
def __missing__(self, key):
return ''
class Exporter(LoggingConfigurable):
"""
Class containing methods that sequentially run a list of preprocessors on a
NotebookNode object and then return the modified NotebookNode object and
accompanying resources dict.
"""
file_extension = Unicode(
'txt', config=True,
help="Extension of the file that should be written to disk"
)
# MIME type of the result file, for HTTP response headers.
# This is *not* a traitlet, because we want to be able to access it from
# the class, not just on instances.
output_mimetype = ''
#Configurability, allows the user to easily add filters and preprocessors.
preprocessors = List(config=True,
help="""List of preprocessors, by name or namespace, to enable.""")
_preprocessors = List()
default_preprocessors = List(['IPython.nbconvert.preprocessors.coalesce_streams',
'IPython.nbconvert.preprocessors.SVG2PDFPreprocessor',
'IPython.nbconvert.preprocessors.ExtractOutputPreprocessor',
'IPython.nbconvert.preprocessors.CSSHTMLHeaderPreprocessor',
'IPython.nbconvert.preprocessors.RevealHelpPreprocessor',
'IPython.nbconvert.preprocessors.LatexPreprocessor',
'IPython.nbconvert.preprocessors.ClearOutputPreprocessor',
'IPython.nbconvert.preprocessors.ExecutePreprocessor',
'IPython.nbconvert.preprocessors.HighlightMagicsPreprocessor'],
config=True,
help="""List of preprocessors available by default, by name, namespace,
instance, or type.""")
def __init__(self, config=None, **kw):
"""
Public constructor
Parameters
----------
config : config
User configuration instance.
"""
with_default_config = self.default_config
if config:
with_default_config.merge(config)
super(Exporter, self).__init__(config=with_default_config, **kw)
self._init_preprocessors()
@property
def default_config(self):
return Config()
def from_notebook_node(self, nb, resources=None, **kw):
"""
Convert a notebook from a notebook node instance.
Parameters
----------
nb : :class:`~IPython.nbformat.current.NotebookNode`
Notebook node
resources : dict
Additional resources that can be accessed read/write by
preprocessors and filters.
**kw
Ignored (?)
"""
nb_copy = copy.deepcopy(nb)
resources = self._init_resources(resources)
if 'language' in nb['metadata']:
resources['language'] = nb['metadata']['language'].lower()
# Preprocess
nb_copy, resources = self._preprocess(nb_copy, resources)
return nb_copy, resources
def from_filename(self, filename, resources=None, **kw):
"""
Convert a notebook from a notebook file.
Parameters
----------
filename : str
Full filename of the notebook file to open and convert.
"""
# Pull the metadata from the filesystem.
if resources is None:
resources = ResourcesDict()
if not 'metadata' in resources or resources['metadata'] == '':
resources['metadata'] = ResourcesDict()
basename = os.path.basename(filename)
notebook_name = basename[:basename.rfind('.')]
resources['metadata']['name'] = notebook_name
modified_date = datetime.datetime.fromtimestamp(os.path.getmtime(filename))
resources['metadata']['modified_date'] = modified_date.strftime(text.date_format)
with io.open(filename, encoding='utf-8') as f:
return self.from_notebook_node(nbformat.read(f, 'json'), resources=resources, **kw)
def from_file(self, file_stream, resources=None, **kw):
"""
Convert a notebook from a notebook file.
Parameters
----------
file_stream : file-like object
Notebook file-like object to convert.
"""
return self.from_notebook_node(nbformat.read(file_stream, 'json'), resources=resources, **kw)
def register_preprocessor(self, preprocessor, enabled=False):
"""
Register a preprocessor.
Preprocessors are classes that act upon the notebook before it is
passed into the Jinja templating engine. preprocessors are also
capable of passing additional information to the Jinja
templating engine.
Parameters
----------
preprocessor : preprocessor
"""
if preprocessor is None:
raise TypeError('preprocessor')
isclass = isinstance(preprocessor, type)
constructed = not isclass
# Handle preprocessor's registration based on it's type
if constructed and isinstance(preprocessor, py3compat.string_types):
# Preprocessor is a string, import the namespace and recursively call
# this register_preprocessor method
preprocessor_cls = import_item(preprocessor)
return self.register_preprocessor(preprocessor_cls, enabled)
if constructed and hasattr(preprocessor, '__call__'):
# Preprocessor is a function, no need to construct it.
# Register and return the preprocessor.
if enabled:
preprocessor.enabled = True
self._preprocessors.append(preprocessor)
return preprocessor
elif isclass and isinstance(preprocessor, MetaHasTraits):
# Preprocessor is configurable. Make sure to pass in new default for
# the enabled flag if one was specified.
self.register_preprocessor(preprocessor(parent=self), enabled)
elif isclass:
# Preprocessor is not configurable, construct it
self.register_preprocessor(preprocessor(), enabled)
else:
# Preprocessor is an instance of something without a __call__
# attribute.
raise TypeError('preprocessor')
def _init_preprocessors(self):
"""
Register all of the preprocessors needed for this exporter, disabled
unless specified explicitly.
"""
self._preprocessors = []
# Load default preprocessors (not necessarly enabled by default).
for preprocessor in self.default_preprocessors:
self.register_preprocessor(preprocessor)
# Load user-specified preprocessors. Enable by default.
for preprocessor in self.preprocessors:
self.register_preprocessor(preprocessor, enabled=True)
def _init_resources(self, resources):
#Make sure the resources dict is of ResourcesDict type.
if resources is None:
resources = ResourcesDict()
if not isinstance(resources, ResourcesDict):
new_resources = ResourcesDict()
new_resources.update(resources)
resources = new_resources
#Make sure the metadata extension exists in resources
if 'metadata' in resources:
if not isinstance(resources['metadata'], ResourcesDict):
resources['metadata'] = ResourcesDict(resources['metadata'])
else:
resources['metadata'] = ResourcesDict()
if not resources['metadata']['name']:
resources['metadata']['name'] = 'Notebook'
#Set the output extension
resources['output_extension'] = self.file_extension
return resources
def _preprocess(self, nb, resources):
"""
Preprocess the notebook before passing it into the Jinja engine.
To preprocess the notebook is to apply all of the
Parameters
----------
nb : notebook node
notebook that is being exported.
resources : a dict of additional resources that
can be accessed read/write by preprocessors
"""
# Do a copy.deepcopy first,
# we are never safe enough with what the preprocessors could do.
nbc = copy.deepcopy(nb)
resc = copy.deepcopy(resources)
#Run each preprocessor on the notebook. Carry the output along
#to each preprocessor
for preprocessor in self._preprocessors:
nbc, resc = preprocessor(nbc, resc)
return nbc, resc