##// END OF EJS Templates
Merge pull request #3606 from minrk/cellmagictransform...
Merge pull request #3606 from minrk/cellmagictransform push cell magic to the head of the transformer line

File last commit:

r9190:20a102a5
r11484:801fda16 merge
Show More
parallel_pylab.ipy
49 lines | 1.2 KiB | text/plain | TextLexer
"""Example of how to use pylab to plot parallel data.
The idea here is to run matplotlib is the same IPython session
as an ipython parallel Client. That way matplotlib
can be used to plot parallel data that is gathered using
a DirectView.
To run this example, first start the IPython controller and 4
engines::
ipcluster -n 4
Then start ipython in pylab mode::
ipython -pylab
Then a simple "run parallel_pylab.ipy" in IPython will run the
example.
"""
import numpy as N
from pylab import *
from IPython.parallel import Client
# load the parallel magic
%load_ext parallelmagic
# Get an IPython Client
rc = Client()
v = rc[:]
v.activate()
# Create random arrays on the engines
# This is to simulate arrays that you have calculated in parallel
# on the engines.
# Anymore that length 10000 arrays, matplotlib starts to be slow
%px import numpy as N
%px x = N.random.standard_normal(10000)
%px y = N.random.standard_normal(10000)
print v.apply_async(lambda : x[0:10]).get_dict()
print v.apply_async(lambda : y[0:10]).get_dict()
# Bring back the data
x_local = v.gather('x', block=True)
y_local = v.gather('y', block=True)
# Make a scatter plot of the gathered data
plot(x_local, y_local,'ro')