##// END OF EJS Templates
regen html reference
regen html reference

File last commit:

r9594:8a3a60dc
r9873:8207dcdc
Show More
XKCD_plots.orig.py
447 lines | 14.9 KiB | text/x-python | PythonLexer
## XKCD plots in Matplotlib
# This notebook originally appeared as a blog post at [Pythonic Perambulations](http://jakevdp.github.com/blog/2012/10/07/xkcd-style-plots-in-matplotlib/) by Jake Vanderplas.
# One of the problems I've had with typical matplotlib figures is that everything in them is so precise, so perfect. For an example of what I mean, take a look at this figure:
# In[1]:
from IPython.display import Image
Image('http://jakevdp.github.com/figures/xkcd_version.png')
# Out[1]:
# <IPython.core.display.Image at 0x2fef710>
# Sometimes when showing schematic plots, this is the type of figure I want to display. But drawing it by hand is a pain: I'd rather just use matplotlib. The problem is, matplotlib is a bit too precise. Attempting to duplicate this figure in matplotlib leads to something like this:
# In[2]:
Image('http://jakevdp.github.com/figures/mpl_version.png')
# Out[2]:
# <IPython.core.display.Image at 0x2fef0d0>
# It just doesn't have the same effect. Matplotlib is great for scientific plots, but sometimes you don't want to be so precise.
#
# This subject has recently come up on the matplotlib mailing list, and started some interesting discussions.
# As near as I can tell, this started with a thread on a
# [mathematica list](http://mathematica.stackexchange.com/questions/11350/xkcd-style-graphs)
# which prompted a thread on the [matplotlib list](http://matplotlib.1069221.n5.nabble.com/XKCD-style-graphs-td39226.html)
# wondering if the same could be done in matplotlib.
#
# Damon McDougall offered a quick
# [solution](http://www.mail-archive.com/matplotlib-users@lists.sourceforge.net/msg25499.html)
# which was improved by Fernando Perez in [this notebook](http://nbviewer.ipython.org/3835181/), and
# within a few days there was a [matplotlib pull request](https://github.com/matplotlib/matplotlib/pull/1329) offering a very general
# way to create sketch-style plots in matplotlib. Only a few days from a cool idea to a
# working implementation: this is one of the most incredible aspects of package development on github.
#
# The pull request looks really nice, but will likely not be included in a released version of
# matplotlib until at least version 1.3. In the mean-time, I wanted a way to play around with
# these types of plots in a way that is compatible with the current release of matplotlib. To do that,
# I created the following code:
### The Code: XKCDify
# XKCDify will take a matplotlib ``Axes`` instance, and modify the plot elements in-place to make
# them look hand-drawn.
# First off, we'll need to make sure we have the Humor Sans font.
# It can be downloaded using the command below.
#
# Next we'll create a function ``xkcd_line`` to add jitter to lines. We want this to be very general, so
# we'll normalize the size of the lines, and use a low-pass filter to add correlated noise, perpendicular
# to the direction of the line. There are a few parameters for this filter that can be tweaked to
# customize the appearance of the jitter.
#
# Finally, we'll create a function which accepts a matplotlib axis, and calls ``xkcd_line`` on
# all lines in the axis. Additionally, we'll switch the font of all text in the axes, and add
# some background lines for a nice effect where lines cross. We'll also draw axes, and move the
# axes labels and titles to the appropriate location.
# In[3]:
"""
XKCD plot generator
-------------------
Author: Jake Vanderplas
This is a script that will take any matplotlib line diagram, and convert it
to an XKCD-style plot. It will work for plots with line & text elements,
including axes labels and titles (but not axes tick labels).
The idea for this comes from work by Damon McDougall
http://www.mail-archive.com/matplotlib-users@lists.sourceforge.net/msg25499.html
"""
import numpy as np
import pylab as pl
from scipy import interpolate, signal
import matplotlib.font_manager as fm
# We need a special font for the code below. It can be downloaded this way:
import os
import urllib2
if not os.path.exists('Humor-Sans.ttf'):
fhandle = urllib2.urlopen('http://antiyawn.com/uploads/Humor-Sans.ttf')
open('Humor-Sans.ttf', 'wb').write(fhandle.read())
def xkcd_line(x, y, xlim=None, ylim=None,
mag=1.0, f1=30, f2=0.05, f3=15):
"""
Mimic a hand-drawn line from (x, y) data
Parameters
----------
x, y : array_like
arrays to be modified
xlim, ylim : data range
the assumed plot range for the modification. If not specified,
they will be guessed from the data
mag : float
magnitude of distortions
f1, f2, f3 : int, float, int
filtering parameters. f1 gives the size of the window, f2 gives
the high-frequency cutoff, f3 gives the size of the filter
Returns
-------
x, y : ndarrays
The modified lines
"""
x = np.asarray(x)
y = np.asarray(y)
# get limits for rescaling
if xlim is None:
xlim = (x.min(), x.max())
if ylim is None:
ylim = (y.min(), y.max())
if xlim[1] == xlim[0]:
xlim = ylim
if ylim[1] == ylim[0]:
ylim = xlim
# scale the data
x_scaled = (x - xlim[0]) * 1. / (xlim[1] - xlim[0])
y_scaled = (y - ylim[0]) * 1. / (ylim[1] - ylim[0])
# compute the total distance along the path
dx = x_scaled[1:] - x_scaled[:-1]
dy = y_scaled[1:] - y_scaled[:-1]
dist_tot = np.sum(np.sqrt(dx * dx + dy * dy))
# number of interpolated points is proportional to the distance
Nu = int(200 * dist_tot)
u = np.arange(-1, Nu + 1) * 1. / (Nu - 1)
# interpolate curve at sampled points
k = min(3, len(x) - 1)
res = interpolate.splprep([x_scaled, y_scaled], s=0, k=k)
x_int, y_int = interpolate.splev(u, res[0])
# we'll perturb perpendicular to the drawn line
dx = x_int[2:] - x_int[:-2]
dy = y_int[2:] - y_int[:-2]
dist = np.sqrt(dx * dx + dy * dy)
# create a filtered perturbation
coeffs = mag * np.random.normal(0, 0.01, len(x_int) - 2)
b = signal.firwin(f1, f2 * dist_tot, window=('kaiser', f3))
response = signal.lfilter(b, 1, coeffs)
x_int[1:-1] += response * dy / dist
y_int[1:-1] += response * dx / dist
# un-scale data
x_int = x_int[1:-1] * (xlim[1] - xlim[0]) + xlim[0]
y_int = y_int[1:-1] * (ylim[1] - ylim[0]) + ylim[0]
return x_int, y_int
def XKCDify(ax, mag=1.0,
f1=50, f2=0.01, f3=15,
bgcolor='w',
xaxis_loc=None,
yaxis_loc=None,
xaxis_arrow='+',
yaxis_arrow='+',
ax_extend=0.1,
expand_axes=False):
"""Make axis look hand-drawn
This adjusts all lines, text, legends, and axes in the figure to look
like xkcd plots. Other plot elements are not modified.
Parameters
----------
ax : Axes instance
the axes to be modified.
mag : float
the magnitude of the distortion
f1, f2, f3 : int, float, int
filtering parameters. f1 gives the size of the window, f2 gives
the high-frequency cutoff, f3 gives the size of the filter
xaxis_loc, yaxis_log : float
The locations to draw the x and y axes. If not specified, they
will be drawn from the bottom left of the plot
xaxis_arrow, yaxis_arrow : str
where to draw arrows on the x/y axes. Options are '+', '-', '+-', or ''
ax_extend : float
How far (fractionally) to extend the drawn axes beyond the original
axes limits
expand_axes : bool
if True, then expand axes to fill the figure (useful if there is only
a single axes in the figure)
"""
# Get axes aspect
ext = ax.get_window_extent().extents
aspect = (ext[3] - ext[1]) / (ext[2] - ext[0])
xlim = ax.get_xlim()
ylim = ax.get_ylim()
xspan = xlim[1] - xlim[0]
yspan = ylim[1] - xlim[0]
xax_lim = (xlim[0] - ax_extend * xspan,
xlim[1] + ax_extend * xspan)
yax_lim = (ylim[0] - ax_extend * yspan,
ylim[1] + ax_extend * yspan)
if xaxis_loc is None:
xaxis_loc = ylim[0]
if yaxis_loc is None:
yaxis_loc = xlim[0]
# Draw axes
xaxis = pl.Line2D([xax_lim[0], xax_lim[1]], [xaxis_loc, xaxis_loc],
linestyle='-', color='k')
yaxis = pl.Line2D([yaxis_loc, yaxis_loc], [yax_lim[0], yax_lim[1]],
linestyle='-', color='k')
# Label axes3, 0.5, 'hello', fontsize=14)
ax.text(xax_lim[1], xaxis_loc - 0.02 * yspan, ax.get_xlabel(),
fontsize=14, ha='right', va='top', rotation=12)
ax.text(yaxis_loc - 0.02 * xspan, yax_lim[1], ax.get_ylabel(),
fontsize=14, ha='right', va='top', rotation=78)
ax.set_xlabel('')
ax.set_ylabel('')
# Add title
ax.text(0.5 * (xax_lim[1] + xax_lim[0]), yax_lim[1],
ax.get_title(),
ha='center', va='bottom', fontsize=16)
ax.set_title('')
Nlines = len(ax.lines)
lines = [xaxis, yaxis] + [ax.lines.pop(0) for i in range(Nlines)]
for line in lines:
x, y = line.get_data()
x_int, y_int = xkcd_line(x, y, xlim, ylim,
mag, f1, f2, f3)
# create foreground and background line
lw = line.get_linewidth()
line.set_linewidth(2 * lw)
line.set_data(x_int, y_int)
# don't add background line for axes
if (line is not xaxis) and (line is not yaxis):
line_bg = pl.Line2D(x_int, y_int, color=bgcolor,
linewidth=8 * lw)
ax.add_line(line_bg)
ax.add_line(line)
# Draw arrow-heads at the end of axes lines
arr1 = 0.03 * np.array([-1, 0, -1])
arr2 = 0.02 * np.array([-1, 0, 1])
arr1[::2] += np.random.normal(0, 0.005, 2)
arr2[::2] += np.random.normal(0, 0.005, 2)
x, y = xaxis.get_data()
if '+' in str(xaxis_arrow):
ax.plot(x[-1] + arr1 * xspan * aspect,
y[-1] + arr2 * yspan,
color='k', lw=2)
if '-' in str(xaxis_arrow):
ax.plot(x[0] - arr1 * xspan * aspect,
y[0] - arr2 * yspan,
color='k', lw=2)
x, y = yaxis.get_data()
if '+' in str(yaxis_arrow):
ax.plot(x[-1] + arr2 * xspan * aspect,
y[-1] + arr1 * yspan,
color='k', lw=2)
if '-' in str(yaxis_arrow):
ax.plot(x[0] - arr2 * xspan * aspect,
y[0] - arr1 * yspan,
color='k', lw=2)
# Change all the fonts to humor-sans.
prop = fm.FontProperties(fname='Humor-Sans.ttf', size=16)
for text in ax.texts:
text.set_fontproperties(prop)
# modify legend
leg = ax.get_legend()
if leg is not None:
leg.set_frame_on(False)
for child in leg.get_children():
if isinstance(child, pl.Line2D):
x, y = child.get_data()
child.set_data(xkcd_line(x, y, mag=10, f1=100, f2=0.001))
child.set_linewidth(2 * child.get_linewidth())
if isinstance(child, pl.Text):
child.set_fontproperties(prop)
# Set the axis limits
ax.set_xlim(xax_lim[0] - 0.1 * xspan,
xax_lim[1] + 0.1 * xspan)
ax.set_ylim(yax_lim[0] - 0.1 * yspan,
yax_lim[1] + 0.1 * yspan)
# adjust the axes
ax.set_xticks([])
ax.set_yticks([])
if expand_axes:
ax.figure.set_facecolor(bgcolor)
ax.set_axis_off()
ax.set_position([0, 0, 1, 1])
return ax
### Testing it Out
# Let's test this out with a simple plot. We'll plot two curves, add some labels,
# and then call ``XKCDify`` on the axis. I think the results are pretty nice!
# In[4]:
%pylab inline
# Out[4]:
#
# Welcome to pylab, a matplotlib-based Python environment [backend: module://IPython.zmq.pylab.backend_inline].
# For more information, type 'help(pylab)'.
#
# In[5]:
np.random.seed(0)
ax = pylab.axes()
x = np.linspace(0, 10, 100)
ax.plot(x, np.sin(x) * np.exp(-0.1 * (x - 5) ** 2), 'b', lw=1, label='damped sine')
ax.plot(x, -np.cos(x) * np.exp(-0.1 * (x - 5) ** 2), 'r', lw=1, label='damped cosine')
ax.set_title('check it out!')
ax.set_xlabel('x label')
ax.set_ylabel('y label')
ax.legend(loc='lower right')
ax.set_xlim(0, 10)
ax.set_ylim(-1.0, 1.0)
#XKCDify the axes -- this operates in-place
XKCDify(ax, xaxis_loc=0.0, yaxis_loc=1.0,
xaxis_arrow='+-', yaxis_arrow='+-',
expand_axes=True)
# Out[5]:
# <matplotlib.axes.AxesSubplot at 0x2fecbd0>
# image file: tests/ipynbref/XKCD_plots_orig_files/XKCD_plots_orig_fig_00.png
### Duplicating an XKCD Comic
# Now let's see if we can use this to replicated an XKCD comic in matplotlib.
# This is a good one:
# In[6]:
Image('http://imgs.xkcd.com/comics/front_door.png')
# Out[6]:
# <IPython.core.display.Image at 0x2ff4a10>
# With the new ``XKCDify`` function, this is relatively easy to replicate. The results
# are not exactly identical, but I think it definitely gets the point across!
# In[7]:
# Some helper functions
def norm(x, x0, sigma):
return np.exp(-0.5 * (x - x0) ** 2 / sigma ** 2)
def sigmoid(x, x0, alpha):
return 1. / (1. + np.exp(- (x - x0) / alpha))
# define the curves
x = np.linspace(0, 1, 100)
y1 = np.sqrt(norm(x, 0.7, 0.05)) + 0.2 * (1.5 - sigmoid(x, 0.8, 0.05))
y2 = 0.2 * norm(x, 0.5, 0.2) + np.sqrt(norm(x, 0.6, 0.05)) + 0.1 * (1 - sigmoid(x, 0.75, 0.05))
y3 = 0.05 + 1.4 * norm(x, 0.85, 0.08)
y3[x > 0.85] = 0.05 + 1.4 * norm(x[x > 0.85], 0.85, 0.3)
# draw the curves
ax = pl.axes()
ax.plot(x, y1, c='gray')
ax.plot(x, y2, c='blue')
ax.plot(x, y3, c='red')
ax.text(0.3, -0.1, "Yard")
ax.text(0.5, -0.1, "Steps")
ax.text(0.7, -0.1, "Door")
ax.text(0.9, -0.1, "Inside")
ax.text(0.05, 1.1, "fear that\nthere's\nsomething\nbehind me")
ax.plot([0.15, 0.2], [1.0, 0.2], '-k', lw=0.5)
ax.text(0.25, 0.8, "forward\nspeed")
ax.plot([0.32, 0.35], [0.75, 0.35], '-k', lw=0.5)
ax.text(0.9, 0.4, "embarrassment")
ax.plot([1.0, 0.8], [0.55, 1.05], '-k', lw=0.5)
ax.set_title("Walking back to my\nfront door at night:")
ax.set_xlim(0, 1)
ax.set_ylim(0, 1.5)
# modify all the axes elements in-place
XKCDify(ax, expand_axes=True)
# Out[7]:
# <matplotlib.axes.AxesSubplot at 0x2fef210>
# image file: tests/ipynbref/XKCD_plots_orig_files/XKCD_plots_orig_fig_01.png
# Pretty good for a couple hours's work!
#
# I think the possibilities here are pretty limitless: this is going to be a hugely
# useful and popular feature in matplotlib, especially when the sketch artist PR is mature
# and part of the main package. I imagine using this style of plot for schematic figures
# in presentations where the normal crisp matplotlib lines look a bit too "scientific".
# I'm giving a few talks at the end of the month... maybe I'll even use some of
# this code there.
#
# This post was written entirely in an IPython Notebook: the notebook file is available for
# download [here](http://jakevdp.github.com/downloads/notebooks/XKCD_plots.ipynb).
# For more information on blogging with notebooks in octopress, see my
# [previous post](http://jakevdp.github.com/blog/2012/10/04/blogging-with-ipython/)
# on the subject.