|
|
"""Remote Functions and decorators for the client."""
|
|
|
#-----------------------------------------------------------------------------
|
|
|
# Copyright (C) 2010 The IPython Development Team
|
|
|
#
|
|
|
# Distributed under the terms of the BSD License. The full license is in
|
|
|
# the file COPYING, distributed as part of this software.
|
|
|
#-----------------------------------------------------------------------------
|
|
|
|
|
|
#-----------------------------------------------------------------------------
|
|
|
# Imports
|
|
|
#-----------------------------------------------------------------------------
|
|
|
|
|
|
import warnings
|
|
|
|
|
|
from IPython.testing import decorators as testdec
|
|
|
|
|
|
from . import map as Map
|
|
|
from .asyncresult import AsyncMapResult
|
|
|
|
|
|
#-----------------------------------------------------------------------------
|
|
|
# Decorators
|
|
|
#-----------------------------------------------------------------------------
|
|
|
|
|
|
@testdec.skip_doctest
|
|
|
def remote(client, bound=True, block=None, targets=None, balanced=None):
|
|
|
"""Turn a function into a remote function.
|
|
|
|
|
|
This method can be used for map:
|
|
|
|
|
|
In [1]: @remote(client,block=True)
|
|
|
...: def func(a):
|
|
|
...: pass
|
|
|
"""
|
|
|
|
|
|
def remote_function(f):
|
|
|
return RemoteFunction(client, f, bound, block, targets, balanced)
|
|
|
return remote_function
|
|
|
|
|
|
@testdec.skip_doctest
|
|
|
def parallel(client, dist='b', bound=True, block=None, targets='all', balanced=None):
|
|
|
"""Turn a function into a parallel remote function.
|
|
|
|
|
|
This method can be used for map:
|
|
|
|
|
|
In [1]: @parallel(client,block=True)
|
|
|
...: def func(a):
|
|
|
...: pass
|
|
|
"""
|
|
|
|
|
|
def parallel_function(f):
|
|
|
return ParallelFunction(client, f, dist, bound, block, targets, balanced)
|
|
|
return parallel_function
|
|
|
|
|
|
#--------------------------------------------------------------------------
|
|
|
# Classes
|
|
|
#--------------------------------------------------------------------------
|
|
|
|
|
|
class RemoteFunction(object):
|
|
|
"""Turn an existing function into a remote function.
|
|
|
|
|
|
Parameters
|
|
|
----------
|
|
|
|
|
|
client : Client instance
|
|
|
The client to be used to connect to engines
|
|
|
f : callable
|
|
|
The function to be wrapped into a remote function
|
|
|
bound : bool [default: False]
|
|
|
Whether the affect the remote namespace when called
|
|
|
block : bool [default: None]
|
|
|
Whether to wait for results or not. The default behavior is
|
|
|
to use the current `block` attribute of `client`
|
|
|
targets : valid target list [default: all]
|
|
|
The targets on which to execute.
|
|
|
balanced : bool
|
|
|
Whether to load-balance with the Task scheduler or not
|
|
|
"""
|
|
|
|
|
|
client = None # the remote connection
|
|
|
func = None # the wrapped function
|
|
|
block = None # whether to block
|
|
|
bound = None # whether to affect the namespace
|
|
|
targets = None # where to execute
|
|
|
balanced = None # whether to load-balance
|
|
|
|
|
|
def __init__(self, client, f, bound=False, block=None, targets=None, balanced=None):
|
|
|
self.client = client
|
|
|
self.func = f
|
|
|
self.block=block
|
|
|
self.bound=bound
|
|
|
self.targets=targets
|
|
|
if balanced is None:
|
|
|
if targets is None:
|
|
|
balanced = True
|
|
|
else:
|
|
|
balanced = False
|
|
|
self.balanced = balanced
|
|
|
|
|
|
def __call__(self, *args, **kwargs):
|
|
|
return self.client.apply(self.func, args=args, kwargs=kwargs,
|
|
|
block=self.block, targets=self.targets, bound=self.bound, balanced=self.balanced)
|
|
|
|
|
|
|
|
|
class ParallelFunction(RemoteFunction):
|
|
|
"""Class for mapping a function to sequences.
|
|
|
|
|
|
This will distribute the sequences according the a mapper, and call
|
|
|
the function on each sub-sequence. If called via map, then the function
|
|
|
will be called once on each element, rather that each sub-sequence.
|
|
|
|
|
|
Parameters
|
|
|
----------
|
|
|
|
|
|
client : Client instance
|
|
|
The client to be used to connect to engines
|
|
|
f : callable
|
|
|
The function to be wrapped into a remote function
|
|
|
bound : bool [default: False]
|
|
|
Whether the affect the remote namespace when called
|
|
|
block : bool [default: None]
|
|
|
Whether to wait for results or not. The default behavior is
|
|
|
to use the current `block` attribute of `client`
|
|
|
targets : valid target list [default: all]
|
|
|
The targets on which to execute.
|
|
|
balanced : bool
|
|
|
Whether to load-balance with the Task scheduler or not
|
|
|
chunk_size : int or None
|
|
|
The size of chunk to use when breaking up sequences in a load-balanced manner
|
|
|
"""
|
|
|
def __init__(self, client, f, dist='b', bound=False, block=None, targets='all', balanced=None, chunk_size=None):
|
|
|
super(ParallelFunction, self).__init__(client,f,bound,block,targets,balanced)
|
|
|
self.chunk_size = chunk_size
|
|
|
|
|
|
mapClass = Map.dists[dist]
|
|
|
self.mapObject = mapClass()
|
|
|
|
|
|
def __call__(self, *sequences):
|
|
|
len_0 = len(sequences[0])
|
|
|
for s in sequences:
|
|
|
if len(s)!=len_0:
|
|
|
msg = 'all sequences must have equal length, but %i!=%i'%(len_0,len(s))
|
|
|
raise ValueError(msg)
|
|
|
|
|
|
if self.balanced:
|
|
|
if self.chunk_size:
|
|
|
nparts = len_0/self.chunk_size + int(len_0%self.chunk_size > 0)
|
|
|
else:
|
|
|
nparts = len_0
|
|
|
targets = [self.targets]*nparts
|
|
|
else:
|
|
|
if self.chunk_size:
|
|
|
warnings.warn("`chunk_size` is ignored when `balanced=False", UserWarning)
|
|
|
# multiplexed:
|
|
|
targets = self.client._build_targets(self.targets)[-1]
|
|
|
nparts = len(targets)
|
|
|
|
|
|
msg_ids = []
|
|
|
# my_f = lambda *a: map(self.func, *a)
|
|
|
for index, t in enumerate(targets):
|
|
|
args = []
|
|
|
for seq in sequences:
|
|
|
part = self.mapObject.getPartition(seq, index, nparts)
|
|
|
if len(part) == 0:
|
|
|
continue
|
|
|
else:
|
|
|
args.append(part)
|
|
|
if not args:
|
|
|
continue
|
|
|
|
|
|
# print (args)
|
|
|
if hasattr(self, '_map'):
|
|
|
f = map
|
|
|
args = [self.func]+args
|
|
|
else:
|
|
|
f=self.func
|
|
|
ar = self.client.apply(f, args=args, block=False, bound=self.bound,
|
|
|
targets=t, balanced=self.balanced)
|
|
|
|
|
|
msg_ids.append(ar.msg_ids[0])
|
|
|
|
|
|
r = AsyncMapResult(self.client, msg_ids, self.mapObject, fname=self.func.__name__)
|
|
|
if self.block:
|
|
|
try:
|
|
|
return r.get()
|
|
|
except KeyboardInterrupt:
|
|
|
return r
|
|
|
else:
|
|
|
return r
|
|
|
|
|
|
def map(self, *sequences):
|
|
|
"""call a function on each element of a sequence remotely.
|
|
|
This should behave very much like the builtin map, but return an AsyncMapResult
|
|
|
if self.block is False.
|
|
|
"""
|
|
|
# set _map as a flag for use inside self.__call__
|
|
|
self._map = True
|
|
|
try:
|
|
|
ret = self.__call__(*sequences)
|
|
|
finally:
|
|
|
del self._map
|
|
|
return ret
|
|
|
|
|
|
__all__ = ['remote', 'parallel', 'RemoteFunction', 'ParallelFunction']
|