##// END OF EJS Templates
go to appropriate line when coming from another cell...
go to appropriate line when coming from another cell Sets the cursor on the last line of the cell when moved up from the top of the cell below, and sets the cursors to the first line when moving down from the bottom of a last line. Here, we retain the character that the cursor was on, so that users wishing to have up-down functionality like one document can still use this shortcut handler and simple adjust the at_top and at_bottom methods

File last commit:

r13604:300ac3d7
r15834:869e697c
Show More
rmagic.py
696 lines | 22.1 KiB | text/x-python | PythonLexer
# -*- coding: utf-8 -*-
"""
======
Rmagic
======
Magic command interface for interactive work with R via rpy2
.. note::
The ``rpy2`` package needs to be installed separately. It
can be obtained using ``easy_install`` or ``pip``.
You will also need a working copy of R.
Usage
=====
To enable the magics below, execute ``%load_ext rmagic``.
``%R``
{R_DOC}
``%Rpush``
{RPUSH_DOC}
``%Rpull``
{RPULL_DOC}
``%Rget``
{RGET_DOC}
"""
from __future__ import print_function
#-----------------------------------------------------------------------------
# Copyright (C) 2012 The IPython Development Team
#
# Distributed under the terms of the BSD License. The full license is in
# the file COPYING, distributed as part of this software.
#-----------------------------------------------------------------------------
import sys
import tempfile
from glob import glob
from shutil import rmtree
# numpy and rpy2 imports
import numpy as np
import rpy2.rinterface as ri
import rpy2.robjects as ro
try:
from rpy2.robjects import pandas2ri
pandas2ri.activate()
except ImportError:
pandas2ri = None
from rpy2.robjects import numpy2ri
numpy2ri.activate()
# IPython imports
from IPython.core.displaypub import publish_display_data
from IPython.core.magic import (Magics, magics_class, line_magic,
line_cell_magic, needs_local_scope)
from IPython.testing.skipdoctest import skip_doctest
from IPython.core.magic_arguments import (
argument, magic_arguments, parse_argstring
)
from IPython.external.simplegeneric import generic
from IPython.utils.py3compat import (str_to_unicode, unicode_to_str, PY3,
unicode_type)
from IPython.utils.text import dedent
class RInterpreterError(ri.RRuntimeError):
"""An error when running R code in a %%R magic cell."""
def __init__(self, line, err, stdout):
self.line = line
self.err = err.rstrip()
self.stdout = stdout.rstrip()
def __unicode__(self):
s = 'Failed to parse and evaluate line %r.\nR error message: %r' % \
(self.line, self.err)
if self.stdout and (self.stdout != self.err):
s += '\nR stdout:\n' + self.stdout
return s
if PY3:
__str__ = __unicode__
else:
def __str__(self):
return unicode_to_str(unicode(self), 'utf-8')
def Rconverter(Robj, dataframe=False):
"""
Convert an object in R's namespace to one suitable
for ipython's namespace.
For a data.frame, it tries to return a structured array.
It first checks for colnames, then names.
If all are NULL, it returns np.asarray(Robj), else
it tries to construct a recarray
Parameters
----------
Robj: an R object returned from rpy2
"""
is_data_frame = ro.r('is.data.frame')
colnames = ro.r('colnames')
rownames = ro.r('rownames') # with pandas, these could be used for the index
names = ro.r('names')
if dataframe:
as_data_frame = ro.r('as.data.frame')
cols = colnames(Robj)
_names = names(Robj)
if cols != ri.NULL:
Robj = as_data_frame(Robj)
names = tuple(np.array(cols))
elif _names != ri.NULL:
names = tuple(np.array(_names))
else: # failed to find names
return np.asarray(Robj)
Robj = np.rec.fromarrays(Robj, names = names)
return np.asarray(Robj)
@generic
def pyconverter(pyobj):
"""Convert Python objects to R objects. Add types using the decorator:
@pyconverter.when_type
"""
return pyobj
# The default conversion for lists seems to make them a nested list. That has
# some advantages, but is rarely convenient, so for interactive use, we convert
# lists to a numpy array, which becomes an R vector.
@pyconverter.when_type(list)
def pyconverter_list(pyobj):
return np.asarray(pyobj)
if pandas2ri is None:
# pandas2ri was new in rpy2 2.3.3, so for now we'll fallback to pandas'
# conversion function.
try:
from pandas import DataFrame
from pandas.rpy.common import convert_to_r_dataframe
@pyconverter.when_type(DataFrame)
def pyconverter_dataframe(pyobj):
return convert_to_r_dataframe(pyobj, strings_as_factors=True)
except ImportError:
pass
@magics_class
class RMagics(Magics):
"""A set of magics useful for interactive work with R via rpy2.
"""
def __init__(self, shell, Rconverter=Rconverter,
pyconverter=pyconverter,
cache_display_data=False):
"""
Parameters
----------
shell : IPython shell
Rconverter : callable
To be called on values taken from R before putting them in the
IPython namespace.
pyconverter : callable
To be called on values in ipython namespace before
assigning to variables in rpy2.
cache_display_data : bool
If True, the published results of the final call to R are
cached in the variable 'display_cache'.
"""
super(RMagics, self).__init__(shell)
self.cache_display_data = cache_display_data
self.r = ro.R()
self.Rstdout_cache = []
self.pyconverter = pyconverter
self.Rconverter = Rconverter
def eval(self, line):
'''
Parse and evaluate a line of R code with rpy2.
Returns the output to R's stdout() connection,
the value generated by evaluating the code, and a
boolean indicating whether the return value would be
visible if the line of code were evaluated in an R REPL.
R Code evaluation and visibility determination are
done via an R call of the form withVisible({<code>})
'''
old_writeconsole = ri.get_writeconsole()
ri.set_writeconsole(self.write_console)
try:
res = ro.r("withVisible({%s})" % line)
value = res[0] #value (R object)
visible = ro.conversion.ri2py(res[1])[0] #visible (boolean)
except (ri.RRuntimeError, ValueError) as exception:
warning_or_other_msg = self.flush() # otherwise next return seems to have copy of error
raise RInterpreterError(line, str_to_unicode(str(exception)), warning_or_other_msg)
text_output = self.flush()
ri.set_writeconsole(old_writeconsole)
return text_output, value, visible
def write_console(self, output):
'''
A hook to capture R's stdout in a cache.
'''
self.Rstdout_cache.append(output)
def flush(self):
'''
Flush R's stdout cache to a string, returning the string.
'''
value = ''.join([str_to_unicode(s, 'utf-8') for s in self.Rstdout_cache])
self.Rstdout_cache = []
return value
@skip_doctest
@needs_local_scope
@line_magic
def Rpush(self, line, local_ns=None):
'''
A line-level magic for R that pushes
variables from python to rpy2. The line should be made up
of whitespace separated variable names in the IPython
namespace::
In [7]: import numpy as np
In [8]: X = np.array([4.5,6.3,7.9])
In [9]: X.mean()
Out[9]: 6.2333333333333343
In [10]: %Rpush X
In [11]: %R mean(X)
Out[11]: array([ 6.23333333])
'''
if local_ns is None:
local_ns = {}
inputs = line.split(' ')
for input in inputs:
try:
val = local_ns[input]
except KeyError:
try:
val = self.shell.user_ns[input]
except KeyError:
# reraise the KeyError as a NameError so that it looks like
# the standard python behavior when you use an unnamed
# variable
raise NameError("name '%s' is not defined" % input)
self.r.assign(input, self.pyconverter(val))
@skip_doctest
@magic_arguments()
@argument(
'-d', '--as_dataframe', action='store_true',
default=False,
help='Convert objects to data.frames before returning to ipython.'
)
@argument(
'outputs',
nargs='*',
)
@line_magic
def Rpull(self, line):
'''
A line-level magic for R that pulls
variables from python to rpy2::
In [18]: _ = %R x = c(3,4,6.7); y = c(4,6,7); z = c('a',3,4)
In [19]: %Rpull x y z
In [20]: x
Out[20]: array([ 3. , 4. , 6.7])
In [21]: y
Out[21]: array([ 4., 6., 7.])
In [22]: z
Out[22]:
array(['a', '3', '4'],
dtype='|S1')
If --as_dataframe, then each object is returned as a structured array
after first passed through "as.data.frame" in R before
being calling self.Rconverter.
This is useful when a structured array is desired as output, or
when the object in R has mixed data types.
See the %%R docstring for more examples.
Notes
-----
Beware that R names can have '.' so this is not fool proof.
To avoid this, don't name your R objects with '.'s...
'''
args = parse_argstring(self.Rpull, line)
outputs = args.outputs
for output in outputs:
self.shell.push({output:self.Rconverter(self.r(output),dataframe=args.as_dataframe)})
@skip_doctest
@magic_arguments()
@argument(
'-d', '--as_dataframe', action='store_true',
default=False,
help='Convert objects to data.frames before returning to ipython.'
)
@argument(
'output',
nargs=1,
type=str,
)
@line_magic
def Rget(self, line):
'''
Return an object from rpy2, possibly as a structured array (if possible).
Similar to Rpull except only one argument is accepted and the value is
returned rather than pushed to self.shell.user_ns::
In [3]: dtype=[('x', '<i4'), ('y', '<f8'), ('z', '|S1')]
In [4]: datapy = np.array([(1, 2.9, 'a'), (2, 3.5, 'b'), (3, 2.1, 'c'), (4, 5, 'e')], dtype=dtype)
In [5]: %R -i datapy
In [6]: %Rget datapy
Out[6]:
array([['1', '2', '3', '4'],
['2', '3', '2', '5'],
['a', 'b', 'c', 'e']],
dtype='|S1')
In [7]: %Rget -d datapy
Out[7]:
array([(1, 2.9, 'a'), (2, 3.5, 'b'), (3, 2.1, 'c'), (4, 5.0, 'e')],
dtype=[('x', '<i4'), ('y', '<f8'), ('z', '|S1')])
'''
args = parse_argstring(self.Rget, line)
output = args.output
return self.Rconverter(self.r(output[0]),dataframe=args.as_dataframe)
@skip_doctest
@magic_arguments()
@argument(
'-i', '--input', action='append',
help='Names of input variable from shell.user_ns to be assigned to R variables of the same names after calling self.pyconverter. Multiple names can be passed separated only by commas with no whitespace.'
)
@argument(
'-o', '--output', action='append',
help='Names of variables to be pushed from rpy2 to shell.user_ns after executing cell body and applying self.Rconverter. Multiple names can be passed separated only by commas with no whitespace.'
)
@argument(
'-w', '--width', type=int,
help='Width of png plotting device sent as an argument to *png* in R.'
)
@argument(
'-h', '--height', type=int,
help='Height of png plotting device sent as an argument to *png* in R.'
)
@argument(
'-d', '--dataframe', action='append',
help='Convert these objects to data.frames and return as structured arrays.'
)
@argument(
'-u', '--units', type=unicode_type, choices=["px", "in", "cm", "mm"],
help='Units of png plotting device sent as an argument to *png* in R. One of ["px", "in", "cm", "mm"].'
)
@argument(
'-r', '--res', type=int,
help='Resolution of png plotting device sent as an argument to *png* in R. Defaults to 72 if *units* is one of ["in", "cm", "mm"].'
)
@argument(
'-p', '--pointsize', type=int,
help='Pointsize of png plotting device sent as an argument to *png* in R.'
)
@argument(
'-b', '--bg',
help='Background of png plotting device sent as an argument to *png* in R.'
)
@argument(
'-n', '--noreturn',
help='Force the magic to not return anything.',
action='store_true',
default=False
)
@argument(
'code',
nargs='*',
)
@needs_local_scope
@line_cell_magic
def R(self, line, cell=None, local_ns=None):
'''
Execute code in R, and pull some of the results back into the Python namespace.
In line mode, this will evaluate an expression and convert the returned value to a Python object.
The return value is determined by rpy2's behaviour of returning the result of evaluating the
final line.
Multiple R lines can be executed by joining them with semicolons::
In [9]: %R X=c(1,4,5,7); sd(X); mean(X)
Out[9]: array([ 4.25])
In cell mode, this will run a block of R code. The resulting value
is printed if it would printed be when evaluating the same code
within a standard R REPL.
Nothing is returned to python by default in cell mode::
In [10]: %%R
....: Y = c(2,4,3,9)
....: summary(lm(Y~X))
Call:
lm(formula = Y ~ X)
Residuals:
1 2 3 4
0.88 -0.24 -2.28 1.64
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.0800 2.3000 0.035 0.975
X 1.0400 0.4822 2.157 0.164
Residual standard error: 2.088 on 2 degrees of freedom
Multiple R-squared: 0.6993,Adjusted R-squared: 0.549
F-statistic: 4.651 on 1 and 2 DF, p-value: 0.1638
In the notebook, plots are published as the output of the cell::
%R plot(X, Y)
will create a scatter plot of X bs Y.
If cell is not None and line has some R code, it is prepended to
the R code in cell.
Objects can be passed back and forth between rpy2 and python via the -i -o flags in line::
In [14]: Z = np.array([1,4,5,10])
In [15]: %R -i Z mean(Z)
Out[15]: array([ 5.])
In [16]: %R -o W W=Z*mean(Z)
Out[16]: array([ 5., 20., 25., 50.])
In [17]: W
Out[17]: array([ 5., 20., 25., 50.])
The return value is determined by these rules:
* If the cell is not None, the magic returns None.
* If the cell evaluates as False, the resulting value is returned
unless the final line prints something to the console, in
which case None is returned.
* If the final line results in a NULL value when evaluated
by rpy2, then None is returned.
* No attempt is made to convert the final value to a structured array.
Use the --dataframe flag or %Rget to push / return a structured array.
* If the -n flag is present, there is no return value.
* A trailing ';' will also result in no return value as the last
value in the line is an empty string.
The --dataframe argument will attempt to return structured arrays.
This is useful for dataframes with
mixed data types. Note also that for a data.frame,
if it is returned as an ndarray, it is transposed::
In [18]: dtype=[('x', '<i4'), ('y', '<f8'), ('z', '|S1')]
In [19]: datapy = np.array([(1, 2.9, 'a'), (2, 3.5, 'b'), (3, 2.1, 'c'), (4, 5, 'e')], dtype=dtype)
In [20]: %%R -o datar
datar = datapy
....:
In [21]: datar
Out[21]:
array([['1', '2', '3', '4'],
['2', '3', '2', '5'],
['a', 'b', 'c', 'e']],
dtype='|S1')
In [22]: %%R -d datar
datar = datapy
....:
In [23]: datar
Out[23]:
array([(1, 2.9, 'a'), (2, 3.5, 'b'), (3, 2.1, 'c'), (4, 5.0, 'e')],
dtype=[('x', '<i4'), ('y', '<f8'), ('z', '|S1')])
The --dataframe argument first tries colnames, then names.
If both are NULL, it returns an ndarray (i.e. unstructured)::
In [1]: %R mydata=c(4,6,8.3); NULL
In [2]: %R -d mydata
In [3]: mydata
Out[3]: array([ 4. , 6. , 8.3])
In [4]: %R names(mydata) = c('a','b','c'); NULL
In [5]: %R -d mydata
In [6]: mydata
Out[6]:
array((4.0, 6.0, 8.3),
dtype=[('a', '<f8'), ('b', '<f8'), ('c', '<f8')])
In [7]: %R -o mydata
In [8]: mydata
Out[8]: array([ 4. , 6. , 8.3])
'''
args = parse_argstring(self.R, line)
# arguments 'code' in line are prepended to
# the cell lines
if cell is None:
code = ''
return_output = True
line_mode = True
else:
code = cell
return_output = False
line_mode = False
code = ' '.join(args.code) + code
# if there is no local namespace then default to an empty dict
if local_ns is None:
local_ns = {}
if args.input:
for input in ','.join(args.input).split(','):
try:
val = local_ns[input]
except KeyError:
try:
val = self.shell.user_ns[input]
except KeyError:
raise NameError("name '%s' is not defined" % input)
self.r.assign(input, self.pyconverter(val))
if getattr(args, 'units') is not None:
if args.units != "px" and getattr(args, 'res') is None:
args.res = 72
args.units = '"%s"' % args.units
png_argdict = dict([(n, getattr(args, n)) for n in ['units', 'res', 'height', 'width', 'bg', 'pointsize']])
png_args = ','.join(['%s=%s' % (o,v) for o, v in png_argdict.items() if v is not None])
# execute the R code in a temporary directory
tmpd = tempfile.mkdtemp()
self.r('png("%s/Rplots%%03d.png",%s)' % (tmpd.replace('\\', '/'), png_args))
text_output = ''
try:
if line_mode:
for line in code.split(';'):
text_result, result, visible = self.eval(line)
text_output += text_result
if text_result:
# the last line printed something to the console so we won't return it
return_output = False
else:
text_result, result, visible = self.eval(code)
text_output += text_result
if visible:
old_writeconsole = ri.get_writeconsole()
ri.set_writeconsole(self.write_console)
ro.r.show(result)
text_output += self.flush()
ri.set_writeconsole(old_writeconsole)
except RInterpreterError as e:
print(e.stdout)
if not e.stdout.endswith(e.err):
print(e.err)
rmtree(tmpd)
return
self.r('dev.off()')
# read out all the saved .png files
images = [open(imgfile, 'rb').read() for imgfile in glob("%s/Rplots*png" % tmpd)]
# now publish the images
# mimicking IPython/zmq/pylab/backend_inline.py
fmt = 'png'
mimetypes = { 'png' : 'image/png', 'svg' : 'image/svg+xml' }
mime = mimetypes[fmt]
# publish the printed R objects, if any
display_data = []
if text_output:
display_data.append(('RMagic.R', {'text/plain':text_output}))
# flush text streams before sending figures, helps a little with output
for image in images:
# synchronization in the console (though it's a bandaid, not a real sln)
sys.stdout.flush(); sys.stderr.flush()
display_data.append(('RMagic.R', {mime: image}))
# kill the temporary directory
rmtree(tmpd)
# try to turn every output into a numpy array
# this means that output are assumed to be castable
# as numpy arrays
if args.output:
for output in ','.join(args.output).split(','):
self.shell.push({output:self.Rconverter(self.r(output), dataframe=False)})
if args.dataframe:
for output in ','.join(args.dataframe).split(','):
self.shell.push({output:self.Rconverter(self.r(output), dataframe=True)})
for tag, disp_d in display_data:
publish_display_data(tag, disp_d)
# this will keep a reference to the display_data
# which might be useful to other objects who happen to use
# this method
if self.cache_display_data:
self.display_cache = display_data
# if in line mode and return_output, return the result as an ndarray
if return_output and not args.noreturn:
if result != ri.NULL:
return self.Rconverter(result, dataframe=False)
__doc__ = __doc__.format(
R_DOC = dedent(RMagics.R.__doc__),
RPUSH_DOC = dedent(RMagics.Rpush.__doc__),
RPULL_DOC = dedent(RMagics.Rpull.__doc__),
RGET_DOC = dedent(RMagics.Rget.__doc__)
)
def load_ipython_extension(ip):
"""Load the extension in IPython."""
ip.register_magics(RMagics)
# Initialising rpy2 interferes with readline. Since, at this point, we've
# probably just loaded rpy2, we reset the delimiters. See issue gh-2759.
if ip.has_readline:
ip.readline.set_completer_delims(ip.readline_delims)