|
|
"""Calculate statistics on the digits of pi in parallel.
|
|
|
|
|
|
This program uses the functions in :file:`pidigits.py` to calculate
|
|
|
the frequencies of 2 digit sequences in the digits of pi. The
|
|
|
results are plotted using matplotlib.
|
|
|
|
|
|
To run, text files from http://www.super-computing.org/
|
|
|
must be installed in the working directory of the IPython engines.
|
|
|
The actual filenames to be used can be set with the ``filestring``
|
|
|
variable below.
|
|
|
|
|
|
The dataset we have been using for this is the 200 million digit one here:
|
|
|
ftp://pi.super-computing.org/.2/pi200m/
|
|
|
"""
|
|
|
|
|
|
from IPython.kernel import client
|
|
|
from matplotlib import pyplot as plt
|
|
|
import numpy as np
|
|
|
from pidigits import *
|
|
|
from timeit import default_timer as clock
|
|
|
|
|
|
|
|
|
# Files with digits of pi (10m digits each)
|
|
|
filestring = 'pi200m-ascii-%(i)02dof20.txt'
|
|
|
files = [filestring % {'i':i} for i in range(1,16)]
|
|
|
|
|
|
|
|
|
# Connect to the IPython cluster
|
|
|
mec = client.MultiEngineClient(profile='mycluster')
|
|
|
mec.run('pidigits.py')
|
|
|
|
|
|
|
|
|
# Run 10m digits on 1 engine
|
|
|
mapper = mec.mapper(targets=0)
|
|
|
t1 = clock()
|
|
|
freqs10m = mapper.map(compute_two_digit_freqs, files[:1])[0]
|
|
|
t2 = clock()
|
|
|
digits_per_second1 = 10.0e6/(t2-t1)
|
|
|
print "Digits per second (1 core, 10m digits): ", digits_per_second1
|
|
|
|
|
|
|
|
|
# Run 150m digits on 15 engines (8 cores)
|
|
|
t1 = clock()
|
|
|
freqs_all = mec.map(compute_two_digit_freqs, files[:len(mec)])
|
|
|
freqs150m = reduce_freqs(freqs_all)
|
|
|
t2 = clock()
|
|
|
digits_per_second8 = 150.0e6/(t2-t1)
|
|
|
print "Digits per second (8 cores, 150m digits): ", digits_per_second8
|
|
|
|
|
|
print "Speedup: ", digits_per_second8/digits_per_second1
|
|
|
|
|
|
plot_two_digit_freqs(freqs150m)
|
|
|
plt.title("2 digit sequences in 150m digits of pi")
|
|
|
|
|
|
|