##// END OF EJS Templates
Add support for simultaneous interactive and inline matplotlib plots....
Add support for simultaneous interactive and inline matplotlib plots. In purely svg mode, there is now no lag with draw() operations, they just produce the figure immediately. And in gui mode, a new function, 'paste', is added to plt and to the user's namespace, that pastes open figures from GUI windows into the editing widget as inline SVGs.

File last commit:

r2133:fcf58986
r2987:94057a1f
Show More
newserialized.py
170 lines | 5.0 KiB | text/x-python | PythonLexer
# encoding: utf-8
# -*- test-case-name: IPython.kernel.test.test_newserialized -*-
"""Refactored serialization classes and interfaces."""
__docformat__ = "restructuredtext en"
# Tell nose to skip this module
__test__ = {}
#-------------------------------------------------------------------------------
# Copyright (C) 2008 The IPython Development Team
#
# Distributed under the terms of the BSD License. The full license is in
# the file COPYING, distributed as part of this software.
#-------------------------------------------------------------------------------
#-------------------------------------------------------------------------------
# Imports
#-------------------------------------------------------------------------------
import cPickle as pickle
from twisted.python import components
from zope.interface import Interface, implements
try:
import numpy
except ImportError:
pass
from IPython.kernel.error import SerializationError
#-----------------------------------------------------------------------------
# Classes and functions
#-----------------------------------------------------------------------------
class ISerialized(Interface):
def getData():
""""""
def getDataSize(units=10.0**6):
""""""
def getTypeDescriptor():
""""""
def getMetadata():
""""""
class IUnSerialized(Interface):
def getObject():
""""""
class Serialized(object):
implements(ISerialized)
def __init__(self, data, typeDescriptor, metadata={}):
self.data = data
self.typeDescriptor = typeDescriptor
self.metadata = metadata
def getData(self):
return self.data
def getDataSize(self, units=10.0**6):
return len(self.data)/units
def getTypeDescriptor(self):
return self.typeDescriptor
def getMetadata(self):
return self.metadata
class UnSerialized(object):
implements(IUnSerialized)
def __init__(self, obj):
self.obj = obj
def getObject(self):
return self.obj
class SerializeIt(object):
implements(ISerialized)
def __init__(self, unSerialized):
self.data = None
self.obj = unSerialized.getObject()
if globals().has_key('numpy'):
if isinstance(self.obj, numpy.ndarray):
if len(self.obj) == 0: # length 0 arrays can't be reconstructed
raise SerializationError("You cannot send a length 0 array")
self.obj = numpy.ascontiguousarray(self.obj, dtype=None)
self.typeDescriptor = 'ndarray'
self.metadata = {'shape':self.obj.shape,
'dtype':self.obj.dtype.str}
else:
self.typeDescriptor = 'pickle'
self.metadata = {}
else:
self.typeDescriptor = 'pickle'
self.metadata = {}
self._generateData()
def _generateData(self):
if self.typeDescriptor == 'ndarray':
self.data = numpy.getbuffer(self.obj)
elif self.typeDescriptor == 'pickle':
self.data = pickle.dumps(self.obj, 2)
else:
raise SerializationError("Really wierd serialization error.")
del self.obj
def getData(self):
return self.data
def getDataSize(self, units=10.0**6):
return len(self.data)/units
def getTypeDescriptor(self):
return self.typeDescriptor
def getMetadata(self):
return self.metadata
class UnSerializeIt(UnSerialized):
implements(IUnSerialized)
def __init__(self, serialized):
self.serialized = serialized
def getObject(self):
typeDescriptor = self.serialized.getTypeDescriptor()
if globals().has_key('numpy'):
if typeDescriptor == 'ndarray':
result = numpy.frombuffer(self.serialized.getData(), dtype = self.serialized.metadata['dtype'])
result.shape = self.serialized.metadata['shape']
# This is a hack to make the array writable. We are working with
# the numpy folks to address this issue.
result = result.copy()
elif typeDescriptor == 'pickle':
result = pickle.loads(self.serialized.getData())
else:
raise SerializationError("Really wierd serialization error.")
elif typeDescriptor == 'pickle':
result = pickle.loads(self.serialized.getData())
else:
raise SerializationError("Really wierd serialization error.")
return result
components.registerAdapter(UnSerializeIt, ISerialized, IUnSerialized)
components.registerAdapter(SerializeIt, IUnSerialized, ISerialized)
def serialize(obj):
return ISerialized(UnSerialized(obj))
def unserialize(serialized):
return IUnSerialized(serialized).getObject()