##// END OF EJS Templates
Merge Laurent's fixes for 64 bits and import checks, see full log below.
Merge Laurent's fixes for 64 bits and import checks, see full log below.

File last commit:

r1395:1feaf0a3
r2538:982a6d7a merge
Show More
task_profiler.py
77 lines | 2.7 KiB | text/x-python | PythonLexer
#!/usr/bin/env python
"""Test the performance of the task farming system.
This script submits a set of tasks to the TaskClient. The tasks
are basically just a time.sleep(t), where t is a random number between
two limits that can be configured at the command line. To run
the script there must first be an IPython controller and engines running::
ipcluster -n 16
A good test to run with 16 engines is::
python task_profiler.py -n 128 -t 0.01 -T 1.0
This should show a speedup of 13-14x. The limitation here is that the
overhead of a single task is about 0.001-0.01 seconds.
"""
import random, sys
from optparse import OptionParser
from IPython.genutils import time
from IPython.kernel import client
def main():
parser = OptionParser()
parser.set_defaults(n=100)
parser.set_defaults(tmin=1)
parser.set_defaults(tmax=60)
parser.set_defaults(controller='localhost')
parser.set_defaults(meport=10105)
parser.set_defaults(tport=10113)
parser.add_option("-n", type='int', dest='n',
help='the number of tasks to run')
parser.add_option("-t", type='float', dest='tmin',
help='the minimum task length in seconds')
parser.add_option("-T", type='float', dest='tmax',
help='the maximum task length in seconds')
parser.add_option("-c", type='string', dest='controller',
help='the address of the controller')
parser.add_option("-p", type='int', dest='meport',
help="the port on which the controller listens for the MultiEngine/RemoteController client")
parser.add_option("-P", type='int', dest='tport',
help="the port on which the controller listens for the TaskClient client")
(opts, args) = parser.parse_args()
assert opts.tmax >= opts.tmin, "tmax must not be smaller than tmin"
rc = client.MultiEngineClient()
tc = client.TaskClient()
print tc.task_controller
rc.block=True
nengines = len(rc.get_ids())
rc.execute('from IPython.genutils import time')
# the jobs should take a random time within a range
times = [random.random()*(opts.tmax-opts.tmin)+opts.tmin for i in range(opts.n)]
tasks = [client.StringTask("time.sleep(%f)"%t) for t in times]
stime = sum(times)
print "executing %i tasks, totalling %.1f secs on %i engines"%(opts.n, stime, nengines)
time.sleep(1)
start = time.time()
taskids = [tc.run(t) for t in tasks]
tc.barrier(taskids)
stop = time.time()
ptime = stop-start
scale = stime/ptime
print "executed %.1f secs in %.1f secs"%(stime, ptime)
print "%.3fx parallel performance on %i engines"%(scale, nengines)
print "%.1f%% of theoretical max"%(100*scale/nengines)
if __name__ == '__main__':
main()