##// END OF EJS Templates
Merge pull request #2255 from minrk/arwait...
Merge pull request #2255 from minrk/arwait better flush iopub with AsyncResults; requesting metadata (e.g. ar.data or ar.stdout) will result in flushing iopub if the outputs are incomplete, so separate wait(0) need not be called.

File last commit:

r4910:0dc49390
r8149:99eddce3 merge
Show More
rmtkernel.py
42 lines | 1.2 KiB | text/x-python | PythonLexer
#-------------------------------------------------------------------------------
# Core routines for computing properties of symmetric random matrices.
#-------------------------------------------------------------------------------
import numpy as np
ra = np.random
la = np.linalg
def GOE(N):
"""Creates an NxN element of the Gaussian Orthogonal Ensemble"""
m = ra.standard_normal((N,N))
m += m.T
return m/2
def center_eigenvalue_diff(mat):
"""Compute the eigvals of mat and then find the center eigval difference."""
N = len(mat)
evals = np.sort(la.eigvals(mat))
diff = np.abs(evals[N/2] - evals[N/2-1])
return diff
def ensemble_diffs(num, N):
"""Return num eigenvalue diffs for the NxN GOE ensemble."""
diffs = np.empty(num)
for i in xrange(num):
mat = GOE(N)
diffs[i] = center_eigenvalue_diff(mat)
return diffs
def normalize_diffs(diffs):
"""Normalize an array of eigenvalue diffs."""
return diffs/diffs.mean()
def normalized_ensemble_diffs(num, N):
"""Return num *normalized* eigenvalue diffs for the NxN GOE ensemble."""
diffs = ensemble_diffs(num, N)
return normalize_diffs(diffs)