##// END OF EJS Templates
Merge pull request #2808 from minrk/parallel_wait...
Merge pull request #2808 from minrk/parallel_wait improve patience for slow Hub in client tests adds a first step in `_wait_for_idle`, where it waits for all tasks to arrive before waiting for no tasks to be running. On a super slow machine, it was possible for `_wait_for_idle` to return prematurely, before tasks had even started. closes #2807

File last commit:

r4910:0dc49390
r9181:9db88115 merge
Show More
parallel_pylab.ipy
49 lines | 1.2 KiB | text/plain | TextLexer
"""Example of how to use pylab to plot parallel data.
The idea here is to run matplotlib is the same IPython session
as an ipython parallel Client. That way matplotlib
can be used to plot parallel data that is gathered using
a DirectView.
To run this example, first start the IPython controller and 4
engines::
ipcluster -n 4
Then start ipython in pylab mode::
ipython -pylab
Then a simple "run parallel_pylab.ipy" in IPython will run the
example.
"""
import numpy as N
from pylab import *
from IPython.parallel import Client
# load the parallel magic
%load_ext parallelmagic
# Get an IPython Client
rc = Client()
v = rc[:]
v.activate()
# Create random arrays on the engines
# This is to simulate arrays that you have calculated in parallel
# on the engines.
# Anymore that length 10000 arrays, matplotlib starts to be slow
%px import numpy as N
%px x = N.random.standard_normal(10000)
%px y = N.random.standard_normal(10000)
print v.apply_async(lambda : x[0:10]).get_dict()
print v.apply_async(lambda : y[0:10]).get_dict()
# Bring back the data
x_local = v.gather('x', block=True)
y_local = v.gather('y', block=True)
# Make a scatter plot of the gathered data
plot(x_local, y_local,'ro')