##// END OF EJS Templates
Merge pull request #1768 from minrk/parallelmagics...
Merge pull request #1768 from minrk/parallelmagics Update parallel magics They now display all output, so you can do parallel plotting or other actions with complex display. The `px` magic has now both line and cell modes, and in cell mode finer control has been added about how to collate output from multiple engines. Tests, docs and example notebook added.

File last commit:

r6035:3077781f
r7060:a1360828 merge
Show More
trapezoid_rule.ipynb
117 lines | 21.0 KiB | text/plain | TextLexer

Basic numerical integration: the trapezoid rule

A simple illustration of the trapezoid rule for definite integration:

$$ \int_{a}^{b} f(x)\, dx \approx \frac{1}{2} \sum_{k=1}^{N} \left( x_{k} - x_{k-1} \right) \left( f(x_{k}) + f(x_{k-1}) \right). $$
First, we define a simple function and sample it between 0 and 10 at 200 points
In [1]:
def f(x):
    return (x-3)*(x-5)*(x-7)+85

x = linspace(0, 10, 200)
y = f(x)

Choose a region to integrate over and take only a few points in that region

In [2]:
a, b = 1, 9
xint = x[logical_and(x>=a, x<=b)][::30]
yint = y[logical_and(x>=a, x<=b)][::30]

Plot both the function and the area below it in the trapezoid approximation

In [3]:
plot(x, y, lw=2)
axis([0, 10, 0, 140])
fill_between(xint, 0, yint, facecolor='gray', alpha=0.4)
text(0.5 * (a + b), 30,r"$\int_a^b f(x)dx$", horizontalalignment='center', fontsize=20);
No description has been provided for this image

Compute the integral both at high accuracy and with the trapezoid approximation

In [4]:
from scipy.integrate import quad, trapz
integral, error = quad(f, 1, 9)
print "The integral is:", integral, "+/-", error
print "The trapezoid approximation with", len(xint), "points is:", trapz(yint, xint)
The integral is: 680.0 +/- 7.54951656745e-12
The trapezoid approximation with 6 points is: 621.286411141
In [ ]: