##// END OF EJS Templates
Merge pull request #1768 from minrk/parallelmagics...
Merge pull request #1768 from minrk/parallelmagics Update parallel magics They now display all output, so you can do parallel plotting or other actions with complex display. The `px` magic has now both line and cell modes, and in cell mode finer control has been added about how to collate output from multiple engines. Tests, docs and example notebook added.

File last commit:

r4910:0dc49390
r7060:a1360828 merge
Show More
parallel_pylab.ipy
49 lines | 1.2 KiB | text/plain | TextLexer
"""Example of how to use pylab to plot parallel data.
The idea here is to run matplotlib is the same IPython session
as an ipython parallel Client. That way matplotlib
can be used to plot parallel data that is gathered using
a DirectView.
To run this example, first start the IPython controller and 4
engines::
ipcluster -n 4
Then start ipython in pylab mode::
ipython -pylab
Then a simple "run parallel_pylab.ipy" in IPython will run the
example.
"""
import numpy as N
from pylab import *
from IPython.parallel import Client
# load the parallel magic
%load_ext parallelmagic
# Get an IPython Client
rc = Client()
v = rc[:]
v.activate()
# Create random arrays on the engines
# This is to simulate arrays that you have calculated in parallel
# on the engines.
# Anymore that length 10000 arrays, matplotlib starts to be slow
%px import numpy as N
%px x = N.random.standard_normal(10000)
%px y = N.random.standard_normal(10000)
print v.apply_async(lambda : x[0:10]).get_dict()
print v.apply_async(lambda : y[0:10]).get_dict()
# Bring back the data
x_local = v.gather('x', block=True)
y_local = v.gather('y', block=True)
# Make a scatter plot of the gathered data
plot(x_local, y_local,'ro')