##// END OF EJS Templates
Changes to pexpect so it does what we need after conversion to Python 3.
Changes to pexpect so it does what we need after conversion to Python 3.

File last commit:

r4777:15670ecb
r4835:a69359fb
Show More
trapezoid_rule.ipynb
77 lines | 21.6 KiB | text/plain | TextLexer

Basic numerical integration: the trapezoid rule

A simple illustration of the trapezoid rule for definite integration:

$$ \int_{a}^{b} f(x)\, dx \approx \frac{1}{2} \sum_{k=1}^{N} \left( x_{k} - x_{k-1} \right) \left( f(x_{k}) + f(x_{k-1}) \right). $$
First, we define a simple function and sample it between 0 and 10 at 200 points
In [1]:
def f(x):
    return (x-3)*(x-5)*(x-7)+85

x = linspace(0, 10, 200)
y = f(x)

Choose a region to integrate over and take only a few points in that region

In [2]:
a, b = 1, 9
xint = x[logical_and(x>=a, x<=b)][::30]
yint = y[logical_and(x>=a, x<=b)][::30]

Plot both the function and the area below it in the trapezoid approximation

In [3]:
plot(x, y, lw=2)
axis([0, 10, 0, 140])
fill_between(xint, 0, yint, facecolor='gray', alpha=0.4)
text(0.5 * (a + b), 30,r"$\int_a^b f(x)dx$", horizontalalignment='center', fontsize=20);
No description has been provided for this image

Compute the integral both at high accuracy and with the trapezoid approximation

In [4]:
from scipy.integrate import quad, trapz
integral, error = quad(f, 1, 9)
print "The integral is:", integral, "+/-", error
print "The trapezoid approximation with", len(xint), "points is:", trapz(yint, xint)
The integral is: 680.0 +/- 7.54951656745e-12
The trapezoid approximation with 6 points is: 621.286411141
In [ ]: