##// END OF EJS Templates
Fix for looking up print function in Python 3.
Fix for looking up print function in Python 3.

File last commit:

r4637:d919e2ec
r4741:a7e8c702
Show More
dense_coding.ipynb
104 lines | 40.5 KiB | text/plain | TextLexer

Dense Coding

In [2]:
%load_ext sympyprinting
In [3]:
from sympy import sqrt, symbols, Rational
from sympy import expand, Eq, Symbol, simplify, exp, sin
from sympy.physics.quantum import *
from sympy.physics.quantum.qubit import *
from sympy.physics.quantum.gate import *
from sympy.physics.quantum.grover import *
from sympy.physics.quantum.qft import QFT, IQFT, Fourier
from sympy.physics.quantum.circuitplot import circuit_plot
In [4]:
psi = Qubit('00')/sqrt(2) + Qubit('11')/sqrt(2); psi
Out[4]:
$$\frac{1}{2} \sqrt{2} {\left|00\right\rangle } + \frac{1}{2} \sqrt{2} {\left|11\right\rangle }$$
In [5]:
circuits = [H(1)*CNOT(1,0), H(1)*CNOT(1,0)*X(1), H(1)*CNOT(1,0)*Z(1), H(1)*CNOT(1,0)*Z(1)*X(1)]
In [6]:
for circuit in circuits:
    circuit_plot(circuit, nqubits=2)
    display(Eq(circuit*psi,qapply(circuit*psi)))
$$H_{1} CNOT_{1,0} \left(\frac{1}{2} \sqrt{2} {\left|00\right\rangle } + \frac{1}{2} \sqrt{2} {\left|11\right\rangle }\right) = {\left|00\right\rangle }$$
$$H_{1} CNOT_{1,0} X_{1} \left(\frac{1}{2} \sqrt{2} {\left|00\right\rangle } + \frac{1}{2} \sqrt{2} {\left|11\right\rangle }\right) = {\left|01\right\rangle }$$
$$H_{1} CNOT_{1,0} Z_{1} \left(\frac{1}{2} \sqrt{2} {\left|00\right\rangle } + \frac{1}{2} \sqrt{2} {\left|11\right\rangle }\right) = {\left|10\right\rangle }$$
$$H_{1} CNOT_{1,0} Z_{1} X_{1} \left(\frac{1}{2} \sqrt{2} {\left|00\right\rangle } + \frac{1}{2} \sqrt{2} {\left|11\right\rangle }\right) = {\left|11\right\rangle }$$
No description has been provided for this image
No description has been provided for this image
No description has been provided for this image
No description has been provided for this image