##// END OF EJS Templates
missed something in a doc in converting to traits-compatible API
missed something in a doc in converting to traits-compatible API

File last commit:

r1395:1feaf0a3
r2470:aefc57e1
Show More
task_profiler.py
77 lines | 2.7 KiB | text/x-python | PythonLexer
#!/usr/bin/env python
"""Test the performance of the task farming system.
This script submits a set of tasks to the TaskClient. The tasks
are basically just a time.sleep(t), where t is a random number between
two limits that can be configured at the command line. To run
the script there must first be an IPython controller and engines running::
ipcluster -n 16
A good test to run with 16 engines is::
python task_profiler.py -n 128 -t 0.01 -T 1.0
This should show a speedup of 13-14x. The limitation here is that the
overhead of a single task is about 0.001-0.01 seconds.
"""
import random, sys
from optparse import OptionParser
from IPython.genutils import time
from IPython.kernel import client
def main():
parser = OptionParser()
parser.set_defaults(n=100)
parser.set_defaults(tmin=1)
parser.set_defaults(tmax=60)
parser.set_defaults(controller='localhost')
parser.set_defaults(meport=10105)
parser.set_defaults(tport=10113)
parser.add_option("-n", type='int', dest='n',
help='the number of tasks to run')
parser.add_option("-t", type='float', dest='tmin',
help='the minimum task length in seconds')
parser.add_option("-T", type='float', dest='tmax',
help='the maximum task length in seconds')
parser.add_option("-c", type='string', dest='controller',
help='the address of the controller')
parser.add_option("-p", type='int', dest='meport',
help="the port on which the controller listens for the MultiEngine/RemoteController client")
parser.add_option("-P", type='int', dest='tport',
help="the port on which the controller listens for the TaskClient client")
(opts, args) = parser.parse_args()
assert opts.tmax >= opts.tmin, "tmax must not be smaller than tmin"
rc = client.MultiEngineClient()
tc = client.TaskClient()
print tc.task_controller
rc.block=True
nengines = len(rc.get_ids())
rc.execute('from IPython.genutils import time')
# the jobs should take a random time within a range
times = [random.random()*(opts.tmax-opts.tmin)+opts.tmin for i in range(opts.n)]
tasks = [client.StringTask("time.sleep(%f)"%t) for t in times]
stime = sum(times)
print "executing %i tasks, totalling %.1f secs on %i engines"%(opts.n, stime, nengines)
time.sleep(1)
start = time.time()
taskids = [tc.run(t) for t in tasks]
tc.barrier(taskids)
stop = time.time()
ptime = stop-start
scale = stime/ptime
print "executed %.1f secs in %.1f secs"%(stime, ptime)
print "%.3fx parallel performance on %i engines"%(scale, nengines)
print "%.1f%% of theoretical max"%(100*scale/nengines)
if __name__ == '__main__':
main()