|
|
# -*- coding: utf-8 -*-
|
|
|
"""
|
|
|
======
|
|
|
Rmagic
|
|
|
======
|
|
|
|
|
|
Magic command interface for interactive work with R via rpy2
|
|
|
|
|
|
.. note::
|
|
|
|
|
|
The ``rpy2`` package needs to be installed separately. It
|
|
|
can be obtained using ``easy_install`` or ``pip``.
|
|
|
|
|
|
You will also need a working copy of R.
|
|
|
|
|
|
Usage
|
|
|
=====
|
|
|
|
|
|
To enable the magics below, execute ``%load_ext rmagic``.
|
|
|
|
|
|
``%R``
|
|
|
|
|
|
{R_DOC}
|
|
|
|
|
|
``%Rpush``
|
|
|
|
|
|
{RPUSH_DOC}
|
|
|
|
|
|
``%Rpull``
|
|
|
|
|
|
{RPULL_DOC}
|
|
|
|
|
|
``%Rget``
|
|
|
|
|
|
{RGET_DOC}
|
|
|
|
|
|
"""
|
|
|
from __future__ import print_function
|
|
|
|
|
|
#-----------------------------------------------------------------------------
|
|
|
# Copyright (C) 2012 The IPython Development Team
|
|
|
#
|
|
|
# Distributed under the terms of the BSD License. The full license is in
|
|
|
# the file COPYING, distributed as part of this software.
|
|
|
#-----------------------------------------------------------------------------
|
|
|
|
|
|
import sys
|
|
|
import tempfile
|
|
|
from glob import glob
|
|
|
from shutil import rmtree
|
|
|
|
|
|
# numpy and rpy2 imports
|
|
|
|
|
|
import numpy as np
|
|
|
|
|
|
import rpy2.rinterface as ri
|
|
|
import rpy2.robjects as ro
|
|
|
try:
|
|
|
from rpy2.robjects import pandas2ri
|
|
|
pandas2ri.activate()
|
|
|
except ImportError:
|
|
|
pandas2ri = None
|
|
|
from rpy2.robjects import numpy2ri
|
|
|
numpy2ri.activate()
|
|
|
|
|
|
# IPython imports
|
|
|
|
|
|
from IPython.core.displaypub import publish_display_data
|
|
|
from IPython.core.magic import (Magics, magics_class, line_magic,
|
|
|
line_cell_magic, needs_local_scope)
|
|
|
from IPython.testing.skipdoctest import skip_doctest
|
|
|
from IPython.core.magic_arguments import (
|
|
|
argument, magic_arguments, parse_argstring
|
|
|
)
|
|
|
from IPython.external.simplegeneric import generic
|
|
|
from IPython.utils.py3compat import (str_to_unicode, unicode_to_str, PY3,
|
|
|
unicode_type)
|
|
|
|
|
|
class RInterpreterError(ri.RRuntimeError):
|
|
|
"""An error when running R code in a %%R magic cell."""
|
|
|
def __init__(self, line, err, stdout):
|
|
|
self.line = line
|
|
|
self.err = err.rstrip()
|
|
|
self.stdout = stdout.rstrip()
|
|
|
|
|
|
def __unicode__(self):
|
|
|
s = 'Failed to parse and evaluate line %r.\nR error message: %r' % \
|
|
|
(self.line, self.err)
|
|
|
if self.stdout and (self.stdout != self.err):
|
|
|
s += '\nR stdout:\n' + self.stdout
|
|
|
return s
|
|
|
|
|
|
if PY3:
|
|
|
__str__ = __unicode__
|
|
|
else:
|
|
|
def __str__(self):
|
|
|
return unicode_to_str(unicode(self), 'utf-8')
|
|
|
|
|
|
def Rconverter(Robj, dataframe=False):
|
|
|
"""
|
|
|
Convert an object in R's namespace to one suitable
|
|
|
for ipython's namespace.
|
|
|
|
|
|
For a data.frame, it tries to return a structured array.
|
|
|
It first checks for colnames, then names.
|
|
|
If all are NULL, it returns np.asarray(Robj), else
|
|
|
it tries to construct a recarray
|
|
|
|
|
|
Parameters
|
|
|
----------
|
|
|
|
|
|
Robj: an R object returned from rpy2
|
|
|
"""
|
|
|
is_data_frame = ro.r('is.data.frame')
|
|
|
colnames = ro.r('colnames')
|
|
|
rownames = ro.r('rownames') # with pandas, these could be used for the index
|
|
|
names = ro.r('names')
|
|
|
|
|
|
if dataframe:
|
|
|
as_data_frame = ro.r('as.data.frame')
|
|
|
cols = colnames(Robj)
|
|
|
_names = names(Robj)
|
|
|
if cols != ri.NULL:
|
|
|
Robj = as_data_frame(Robj)
|
|
|
names = tuple(np.array(cols))
|
|
|
elif _names != ri.NULL:
|
|
|
names = tuple(np.array(_names))
|
|
|
else: # failed to find names
|
|
|
return np.asarray(Robj)
|
|
|
Robj = np.rec.fromarrays(Robj, names = names)
|
|
|
return np.asarray(Robj)
|
|
|
|
|
|
@generic
|
|
|
def pyconverter(pyobj):
|
|
|
"""Convert Python objects to R objects. Add types using the decorator:
|
|
|
|
|
|
@pyconverter.when_type
|
|
|
"""
|
|
|
return pyobj
|
|
|
|
|
|
# The default conversion for lists seems to make them a nested list. That has
|
|
|
# some advantages, but is rarely convenient, so for interactive use, we convert
|
|
|
# lists to a numpy array, which becomes an R vector.
|
|
|
@pyconverter.when_type(list)
|
|
|
def pyconverter_list(pyobj):
|
|
|
return np.asarray(pyobj)
|
|
|
|
|
|
if pandas2ri is None:
|
|
|
# pandas2ri was new in rpy2 2.3.3, so for now we'll fallback to pandas'
|
|
|
# conversion function.
|
|
|
try:
|
|
|
from pandas import DataFrame
|
|
|
from pandas.rpy.common import convert_to_r_dataframe
|
|
|
@pyconverter.when_type(DataFrame)
|
|
|
def pyconverter_dataframe(pyobj):
|
|
|
return convert_to_r_dataframe(pyobj, strings_as_factors=True)
|
|
|
except ImportError:
|
|
|
pass
|
|
|
|
|
|
@magics_class
|
|
|
class RMagics(Magics):
|
|
|
"""A set of magics useful for interactive work with R via rpy2.
|
|
|
"""
|
|
|
|
|
|
def __init__(self, shell, Rconverter=Rconverter,
|
|
|
pyconverter=pyconverter,
|
|
|
cache_display_data=False):
|
|
|
"""
|
|
|
Parameters
|
|
|
----------
|
|
|
|
|
|
shell : IPython shell
|
|
|
|
|
|
Rconverter : callable
|
|
|
To be called on values taken from R before putting them in the
|
|
|
IPython namespace.
|
|
|
|
|
|
pyconverter : callable
|
|
|
To be called on values in ipython namespace before
|
|
|
assigning to variables in rpy2.
|
|
|
|
|
|
cache_display_data : bool
|
|
|
If True, the published results of the final call to R are
|
|
|
cached in the variable 'display_cache'.
|
|
|
|
|
|
"""
|
|
|
super(RMagics, self).__init__(shell)
|
|
|
self.cache_display_data = cache_display_data
|
|
|
|
|
|
self.r = ro.R()
|
|
|
|
|
|
self.Rstdout_cache = []
|
|
|
self.pyconverter = pyconverter
|
|
|
self.Rconverter = Rconverter
|
|
|
|
|
|
def eval(self, line):
|
|
|
'''
|
|
|
Parse and evaluate a line of R code with rpy2.
|
|
|
Returns the output to R's stdout() connection,
|
|
|
the value generated by evaluating the code, and a
|
|
|
boolean indicating whether the return value would be
|
|
|
visible if the line of code were evaluated in an R REPL.
|
|
|
|
|
|
R Code evaluation and visibility determination are
|
|
|
done via an R call of the form withVisible({<code>})
|
|
|
|
|
|
'''
|
|
|
old_writeconsole = ri.get_writeconsole()
|
|
|
ri.set_writeconsole(self.write_console)
|
|
|
try:
|
|
|
res = ro.r("withVisible({%s})" % line)
|
|
|
value = res[0] #value (R object)
|
|
|
visible = ro.conversion.ri2py(res[1])[0] #visible (boolean)
|
|
|
except (ri.RRuntimeError, ValueError) as exception:
|
|
|
warning_or_other_msg = self.flush() # otherwise next return seems to have copy of error
|
|
|
raise RInterpreterError(line, str_to_unicode(str(exception)), warning_or_other_msg)
|
|
|
text_output = self.flush()
|
|
|
ri.set_writeconsole(old_writeconsole)
|
|
|
return text_output, value, visible
|
|
|
|
|
|
def write_console(self, output):
|
|
|
'''
|
|
|
A hook to capture R's stdout in a cache.
|
|
|
'''
|
|
|
self.Rstdout_cache.append(output)
|
|
|
|
|
|
def flush(self):
|
|
|
'''
|
|
|
Flush R's stdout cache to a string, returning the string.
|
|
|
'''
|
|
|
value = ''.join([str_to_unicode(s, 'utf-8') for s in self.Rstdout_cache])
|
|
|
self.Rstdout_cache = []
|
|
|
return value
|
|
|
|
|
|
@skip_doctest
|
|
|
@needs_local_scope
|
|
|
@line_magic
|
|
|
def Rpush(self, line, local_ns=None):
|
|
|
'''
|
|
|
A line-level magic for R that pushes
|
|
|
variables from python to rpy2. The line should be made up
|
|
|
of whitespace separated variable names in the IPython
|
|
|
namespace::
|
|
|
|
|
|
In [7]: import numpy as np
|
|
|
|
|
|
In [8]: X = np.array([4.5,6.3,7.9])
|
|
|
|
|
|
In [9]: X.mean()
|
|
|
Out[9]: 6.2333333333333343
|
|
|
|
|
|
In [10]: %Rpush X
|
|
|
|
|
|
In [11]: %R mean(X)
|
|
|
Out[11]: array([ 6.23333333])
|
|
|
|
|
|
'''
|
|
|
if local_ns is None:
|
|
|
local_ns = {}
|
|
|
|
|
|
inputs = line.split(' ')
|
|
|
for input in inputs:
|
|
|
try:
|
|
|
val = local_ns[input]
|
|
|
except KeyError:
|
|
|
try:
|
|
|
val = self.shell.user_ns[input]
|
|
|
except KeyError:
|
|
|
# reraise the KeyError as a NameError so that it looks like
|
|
|
# the standard python behavior when you use an unnamed
|
|
|
# variable
|
|
|
raise NameError("name '%s' is not defined" % input)
|
|
|
|
|
|
self.r.assign(input, self.pyconverter(val))
|
|
|
|
|
|
@skip_doctest
|
|
|
@magic_arguments()
|
|
|
@argument(
|
|
|
'-d', '--as_dataframe', action='store_true',
|
|
|
default=False,
|
|
|
help='Convert objects to data.frames before returning to ipython.'
|
|
|
)
|
|
|
@argument(
|
|
|
'outputs',
|
|
|
nargs='*',
|
|
|
)
|
|
|
@line_magic
|
|
|
def Rpull(self, line):
|
|
|
'''
|
|
|
A line-level magic for R that pulls
|
|
|
variables from python to rpy2::
|
|
|
|
|
|
In [18]: _ = %R x = c(3,4,6.7); y = c(4,6,7); z = c('a',3,4)
|
|
|
|
|
|
In [19]: %Rpull x y z
|
|
|
|
|
|
In [20]: x
|
|
|
Out[20]: array([ 3. , 4. , 6.7])
|
|
|
|
|
|
In [21]: y
|
|
|
Out[21]: array([ 4., 6., 7.])
|
|
|
|
|
|
In [22]: z
|
|
|
Out[22]:
|
|
|
array(['a', '3', '4'],
|
|
|
dtype='|S1')
|
|
|
|
|
|
|
|
|
If --as_dataframe, then each object is returned as a structured array
|
|
|
after first passed through "as.data.frame" in R before
|
|
|
being calling self.Rconverter.
|
|
|
This is useful when a structured array is desired as output, or
|
|
|
when the object in R has mixed data types.
|
|
|
See the %%R docstring for more examples.
|
|
|
|
|
|
Notes
|
|
|
-----
|
|
|
|
|
|
Beware that R names can have '.' so this is not fool proof.
|
|
|
To avoid this, don't name your R objects with '.'s...
|
|
|
|
|
|
'''
|
|
|
args = parse_argstring(self.Rpull, line)
|
|
|
outputs = args.outputs
|
|
|
for output in outputs:
|
|
|
self.shell.push({output:self.Rconverter(self.r(output),dataframe=args.as_dataframe)})
|
|
|
|
|
|
@skip_doctest
|
|
|
@magic_arguments()
|
|
|
@argument(
|
|
|
'-d', '--as_dataframe', action='store_true',
|
|
|
default=False,
|
|
|
help='Convert objects to data.frames before returning to ipython.'
|
|
|
)
|
|
|
@argument(
|
|
|
'output',
|
|
|
nargs=1,
|
|
|
type=str,
|
|
|
)
|
|
|
@line_magic
|
|
|
def Rget(self, line):
|
|
|
'''
|
|
|
Return an object from rpy2, possibly as a structured array (if possible).
|
|
|
Similar to Rpull except only one argument is accepted and the value is
|
|
|
returned rather than pushed to self.shell.user_ns::
|
|
|
|
|
|
In [3]: dtype=[('x', '<i4'), ('y', '<f8'), ('z', '|S1')]
|
|
|
|
|
|
In [4]: datapy = np.array([(1, 2.9, 'a'), (2, 3.5, 'b'), (3, 2.1, 'c'), (4, 5, 'e')], dtype=dtype)
|
|
|
|
|
|
In [5]: %R -i datapy
|
|
|
|
|
|
In [6]: %Rget datapy
|
|
|
Out[6]:
|
|
|
array([['1', '2', '3', '4'],
|
|
|
['2', '3', '2', '5'],
|
|
|
['a', 'b', 'c', 'e']],
|
|
|
dtype='|S1')
|
|
|
|
|
|
In [7]: %Rget -d datapy
|
|
|
Out[7]:
|
|
|
array([(1, 2.9, 'a'), (2, 3.5, 'b'), (3, 2.1, 'c'), (4, 5.0, 'e')],
|
|
|
dtype=[('x', '<i4'), ('y', '<f8'), ('z', '|S1')])
|
|
|
|
|
|
'''
|
|
|
args = parse_argstring(self.Rget, line)
|
|
|
output = args.output
|
|
|
return self.Rconverter(self.r(output[0]),dataframe=args.as_dataframe)
|
|
|
|
|
|
|
|
|
@skip_doctest
|
|
|
@magic_arguments()
|
|
|
@argument(
|
|
|
'-i', '--input', action='append',
|
|
|
help='Names of input variable from shell.user_ns to be assigned to R variables of the same names after calling self.pyconverter. Multiple names can be passed separated only by commas with no whitespace.'
|
|
|
)
|
|
|
@argument(
|
|
|
'-o', '--output', action='append',
|
|
|
help='Names of variables to be pushed from rpy2 to shell.user_ns after executing cell body and applying self.Rconverter. Multiple names can be passed separated only by commas with no whitespace.'
|
|
|
)
|
|
|
@argument(
|
|
|
'-w', '--width', type=int,
|
|
|
help='Width of png plotting device sent as an argument to *png* in R.'
|
|
|
)
|
|
|
@argument(
|
|
|
'-h', '--height', type=int,
|
|
|
help='Height of png plotting device sent as an argument to *png* in R.'
|
|
|
)
|
|
|
|
|
|
@argument(
|
|
|
'-d', '--dataframe', action='append',
|
|
|
help='Convert these objects to data.frames and return as structured arrays.'
|
|
|
)
|
|
|
@argument(
|
|
|
'-u', '--units', type=unicode_type, choices=["px", "in", "cm", "mm"],
|
|
|
help='Units of png plotting device sent as an argument to *png* in R. One of ["px", "in", "cm", "mm"].'
|
|
|
)
|
|
|
@argument(
|
|
|
'-r', '--res', type=int,
|
|
|
help='Resolution of png plotting device sent as an argument to *png* in R. Defaults to 72 if *units* is one of ["in", "cm", "mm"].'
|
|
|
)
|
|
|
@argument(
|
|
|
'-p', '--pointsize', type=int,
|
|
|
help='Pointsize of png plotting device sent as an argument to *png* in R.'
|
|
|
)
|
|
|
@argument(
|
|
|
'-b', '--bg',
|
|
|
help='Background of png plotting device sent as an argument to *png* in R.'
|
|
|
)
|
|
|
@argument(
|
|
|
'-n', '--noreturn',
|
|
|
help='Force the magic to not return anything.',
|
|
|
action='store_true',
|
|
|
default=False
|
|
|
)
|
|
|
@argument(
|
|
|
'code',
|
|
|
nargs='*',
|
|
|
)
|
|
|
@needs_local_scope
|
|
|
@line_cell_magic
|
|
|
def R(self, line, cell=None, local_ns=None):
|
|
|
'''
|
|
|
Execute code in R, and pull some of the results back into the Python namespace.
|
|
|
|
|
|
In line mode, this will evaluate an expression and convert the returned value to a Python object.
|
|
|
The return value is determined by rpy2's behaviour of returning the result of evaluating the
|
|
|
final line.
|
|
|
|
|
|
Multiple R lines can be executed by joining them with semicolons::
|
|
|
|
|
|
In [9]: %R X=c(1,4,5,7); sd(X); mean(X)
|
|
|
Out[9]: array([ 4.25])
|
|
|
|
|
|
In cell mode, this will run a block of R code. The resulting value
|
|
|
is printed if it would printed be when evaluating the same code
|
|
|
within a standard R REPL.
|
|
|
|
|
|
Nothing is returned to python by default in cell mode::
|
|
|
|
|
|
In [10]: %%R
|
|
|
....: Y = c(2,4,3,9)
|
|
|
....: summary(lm(Y~X))
|
|
|
|
|
|
Call:
|
|
|
lm(formula = Y ~ X)
|
|
|
|
|
|
Residuals:
|
|
|
1 2 3 4
|
|
|
0.88 -0.24 -2.28 1.64
|
|
|
|
|
|
Coefficients:
|
|
|
Estimate Std. Error t value Pr(>|t|)
|
|
|
(Intercept) 0.0800 2.3000 0.035 0.975
|
|
|
X 1.0400 0.4822 2.157 0.164
|
|
|
|
|
|
Residual standard error: 2.088 on 2 degrees of freedom
|
|
|
Multiple R-squared: 0.6993,Adjusted R-squared: 0.549
|
|
|
F-statistic: 4.651 on 1 and 2 DF, p-value: 0.1638
|
|
|
|
|
|
In the notebook, plots are published as the output of the cell::
|
|
|
|
|
|
%R plot(X, Y)
|
|
|
|
|
|
will create a scatter plot of X bs Y.
|
|
|
|
|
|
If cell is not None and line has some R code, it is prepended to
|
|
|
the R code in cell.
|
|
|
|
|
|
Objects can be passed back and forth between rpy2 and python via the -i -o flags in line::
|
|
|
|
|
|
In [14]: Z = np.array([1,4,5,10])
|
|
|
|
|
|
In [15]: %R -i Z mean(Z)
|
|
|
Out[15]: array([ 5.])
|
|
|
|
|
|
|
|
|
In [16]: %R -o W W=Z*mean(Z)
|
|
|
Out[16]: array([ 5., 20., 25., 50.])
|
|
|
|
|
|
In [17]: W
|
|
|
Out[17]: array([ 5., 20., 25., 50.])
|
|
|
|
|
|
The return value is determined by these rules:
|
|
|
|
|
|
* If the cell is not None, the magic returns None.
|
|
|
|
|
|
* If the cell evaluates as False, the resulting value is returned
|
|
|
unless the final line prints something to the console, in
|
|
|
which case None is returned.
|
|
|
|
|
|
* If the final line results in a NULL value when evaluated
|
|
|
by rpy2, then None is returned.
|
|
|
|
|
|
* No attempt is made to convert the final value to a structured array.
|
|
|
Use the --dataframe flag or %Rget to push / return a structured array.
|
|
|
|
|
|
* If the -n flag is present, there is no return value.
|
|
|
|
|
|
* A trailing ';' will also result in no return value as the last
|
|
|
value in the line is an empty string.
|
|
|
|
|
|
The --dataframe argument will attempt to return structured arrays.
|
|
|
This is useful for dataframes with
|
|
|
mixed data types. Note also that for a data.frame,
|
|
|
if it is returned as an ndarray, it is transposed::
|
|
|
|
|
|
In [18]: dtype=[('x', '<i4'), ('y', '<f8'), ('z', '|S1')]
|
|
|
|
|
|
In [19]: datapy = np.array([(1, 2.9, 'a'), (2, 3.5, 'b'), (3, 2.1, 'c'), (4, 5, 'e')], dtype=dtype)
|
|
|
|
|
|
In [20]: %%R -o datar
|
|
|
datar = datapy
|
|
|
....:
|
|
|
|
|
|
In [21]: datar
|
|
|
Out[21]:
|
|
|
array([['1', '2', '3', '4'],
|
|
|
['2', '3', '2', '5'],
|
|
|
['a', 'b', 'c', 'e']],
|
|
|
dtype='|S1')
|
|
|
|
|
|
In [22]: %%R -d datar
|
|
|
datar = datapy
|
|
|
....:
|
|
|
|
|
|
In [23]: datar
|
|
|
Out[23]:
|
|
|
array([(1, 2.9, 'a'), (2, 3.5, 'b'), (3, 2.1, 'c'), (4, 5.0, 'e')],
|
|
|
dtype=[('x', '<i4'), ('y', '<f8'), ('z', '|S1')])
|
|
|
|
|
|
The --dataframe argument first tries colnames, then names.
|
|
|
If both are NULL, it returns an ndarray (i.e. unstructured)::
|
|
|
|
|
|
In [1]: %R mydata=c(4,6,8.3); NULL
|
|
|
|
|
|
In [2]: %R -d mydata
|
|
|
|
|
|
In [3]: mydata
|
|
|
Out[3]: array([ 4. , 6. , 8.3])
|
|
|
|
|
|
In [4]: %R names(mydata) = c('a','b','c'); NULL
|
|
|
|
|
|
In [5]: %R -d mydata
|
|
|
|
|
|
In [6]: mydata
|
|
|
Out[6]:
|
|
|
array((4.0, 6.0, 8.3),
|
|
|
dtype=[('a', '<f8'), ('b', '<f8'), ('c', '<f8')])
|
|
|
|
|
|
In [7]: %R -o mydata
|
|
|
|
|
|
In [8]: mydata
|
|
|
Out[8]: array([ 4. , 6. , 8.3])
|
|
|
|
|
|
'''
|
|
|
|
|
|
args = parse_argstring(self.R, line)
|
|
|
|
|
|
# arguments 'code' in line are prepended to
|
|
|
# the cell lines
|
|
|
|
|
|
if cell is None:
|
|
|
code = ''
|
|
|
return_output = True
|
|
|
line_mode = True
|
|
|
else:
|
|
|
code = cell
|
|
|
return_output = False
|
|
|
line_mode = False
|
|
|
|
|
|
code = ' '.join(args.code) + code
|
|
|
|
|
|
# if there is no local namespace then default to an empty dict
|
|
|
if local_ns is None:
|
|
|
local_ns = {}
|
|
|
|
|
|
if args.input:
|
|
|
for input in ','.join(args.input).split(','):
|
|
|
try:
|
|
|
val = local_ns[input]
|
|
|
except KeyError:
|
|
|
try:
|
|
|
val = self.shell.user_ns[input]
|
|
|
except KeyError:
|
|
|
raise NameError("name '%s' is not defined" % input)
|
|
|
self.r.assign(input, self.pyconverter(val))
|
|
|
|
|
|
if getattr(args, 'units') is not None:
|
|
|
if args.units != "px" and getattr(args, 'res') is None:
|
|
|
args.res = 72
|
|
|
args.units = '"%s"' % args.units
|
|
|
|
|
|
png_argdict = dict([(n, getattr(args, n)) for n in ['units', 'res', 'height', 'width', 'bg', 'pointsize']])
|
|
|
png_args = ','.join(['%s=%s' % (o,v) for o, v in png_argdict.items() if v is not None])
|
|
|
# execute the R code in a temporary directory
|
|
|
|
|
|
tmpd = tempfile.mkdtemp()
|
|
|
self.r('png("%s/Rplots%%03d.png",%s)' % (tmpd.replace('\\', '/'), png_args))
|
|
|
|
|
|
text_output = ''
|
|
|
try:
|
|
|
if line_mode:
|
|
|
for line in code.split(';'):
|
|
|
text_result, result, visible = self.eval(line)
|
|
|
text_output += text_result
|
|
|
if text_result:
|
|
|
# the last line printed something to the console so we won't return it
|
|
|
return_output = False
|
|
|
else:
|
|
|
text_result, result, visible = self.eval(code)
|
|
|
text_output += text_result
|
|
|
if visible:
|
|
|
old_writeconsole = ri.get_writeconsole()
|
|
|
ri.set_writeconsole(self.write_console)
|
|
|
ro.r.show(result)
|
|
|
text_output += self.flush()
|
|
|
ri.set_writeconsole(old_writeconsole)
|
|
|
|
|
|
except RInterpreterError as e:
|
|
|
print(e.stdout)
|
|
|
if not e.stdout.endswith(e.err):
|
|
|
print(e.err)
|
|
|
rmtree(tmpd)
|
|
|
return
|
|
|
|
|
|
self.r('dev.off()')
|
|
|
|
|
|
# read out all the saved .png files
|
|
|
|
|
|
images = [open(imgfile, 'rb').read() for imgfile in glob("%s/Rplots*png" % tmpd)]
|
|
|
|
|
|
# now publish the images
|
|
|
# mimicking IPython/zmq/pylab/backend_inline.py
|
|
|
fmt = 'png'
|
|
|
mimetypes = { 'png' : 'image/png', 'svg' : 'image/svg+xml' }
|
|
|
mime = mimetypes[fmt]
|
|
|
|
|
|
# publish the printed R objects, if any
|
|
|
|
|
|
display_data = []
|
|
|
if text_output:
|
|
|
display_data.append(('RMagic.R', {'text/plain':text_output}))
|
|
|
|
|
|
# flush text streams before sending figures, helps a little with output
|
|
|
for image in images:
|
|
|
# synchronization in the console (though it's a bandaid, not a real sln)
|
|
|
sys.stdout.flush(); sys.stderr.flush()
|
|
|
display_data.append(('RMagic.R', {mime: image}))
|
|
|
|
|
|
# kill the temporary directory
|
|
|
rmtree(tmpd)
|
|
|
|
|
|
# try to turn every output into a numpy array
|
|
|
# this means that output are assumed to be castable
|
|
|
# as numpy arrays
|
|
|
|
|
|
if args.output:
|
|
|
for output in ','.join(args.output).split(','):
|
|
|
self.shell.push({output:self.Rconverter(self.r(output), dataframe=False)})
|
|
|
|
|
|
if args.dataframe:
|
|
|
for output in ','.join(args.dataframe).split(','):
|
|
|
self.shell.push({output:self.Rconverter(self.r(output), dataframe=True)})
|
|
|
|
|
|
for tag, disp_d in display_data:
|
|
|
publish_display_data(tag, disp_d)
|
|
|
|
|
|
# this will keep a reference to the display_data
|
|
|
# which might be useful to other objects who happen to use
|
|
|
# this method
|
|
|
|
|
|
if self.cache_display_data:
|
|
|
self.display_cache = display_data
|
|
|
|
|
|
# if in line mode and return_output, return the result as an ndarray
|
|
|
if return_output and not args.noreturn:
|
|
|
if result != ri.NULL:
|
|
|
return self.Rconverter(result, dataframe=False)
|
|
|
|
|
|
__doc__ = __doc__.format(
|
|
|
R_DOC = ' '*8 + RMagics.R.__doc__,
|
|
|
RPUSH_DOC = ' '*8 + RMagics.Rpush.__doc__,
|
|
|
RPULL_DOC = ' '*8 + RMagics.Rpull.__doc__,
|
|
|
RGET_DOC = ' '*8 + RMagics.Rget.__doc__
|
|
|
)
|
|
|
|
|
|
|
|
|
def load_ipython_extension(ip):
|
|
|
"""Load the extension in IPython."""
|
|
|
ip.register_magics(RMagics)
|
|
|
# Initialising rpy2 interferes with readline. Since, at this point, we've
|
|
|
# probably just loaded rpy2, we reset the delimiters. See issue gh-2759.
|
|
|
if ip.has_readline:
|
|
|
ip.readline.set_completer_delims(ip.readline_delims)
|
|
|
|