|
|
"""
|
|
|
Module that regroups transformer that woudl be applied to ipynb files
|
|
|
before going through the templating machinery.
|
|
|
|
|
|
It exposes convenient classes to inherit from to access configurability
|
|
|
as well as decorator to simplify tasks.
|
|
|
"""
|
|
|
|
|
|
from __future__ import print_function, absolute_import
|
|
|
|
|
|
from IPython.config.configurable import Configurable
|
|
|
from IPython.utils.traitlets import Unicode, Bool, Dict, List
|
|
|
|
|
|
from .config import GlobalConfigurable
|
|
|
|
|
|
class ConfigurableTransformers(GlobalConfigurable):
|
|
|
""" A configurable transformer
|
|
|
|
|
|
Inherit from this class if you wish to have configurability for your
|
|
|
transformer.
|
|
|
|
|
|
Any configurable traitlets this class exposed will be configurable in profiles
|
|
|
using c.SubClassName.atribute=value
|
|
|
|
|
|
you can overwrite cell_transform to apply a transformation independently on each cell
|
|
|
or __call__ if you prefer your own logic. See orresponding docstring for informations.
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
def __init__(self, config=None, **kw):
|
|
|
super(ConfigurableTransformers, self).__init__(config=config, **kw)
|
|
|
|
|
|
def __call__(self, nb, other):
|
|
|
"""transformation to apply on each notebook.
|
|
|
|
|
|
received a handle to the current notebook as well as a dict of resources
|
|
|
which structure depends on the transformer.
|
|
|
|
|
|
You should return modified nb, other.
|
|
|
|
|
|
If you wish to apply on each cell, you might want to overwrite cell_transform method.
|
|
|
"""
|
|
|
try :
|
|
|
for worksheet in nb.worksheets :
|
|
|
for index, cell in enumerate(worksheet.cells):
|
|
|
worksheet.cells[index], other = self.cell_transform(cell, other, 100*index)
|
|
|
return nb, other
|
|
|
except NotImplementedError:
|
|
|
raise NotImplementedError('should be implemented by subclass')
|
|
|
|
|
|
def cell_transform(self, cell, other, index):
|
|
|
"""
|
|
|
Overwrite if you want to apply a transformation on each cell,
|
|
|
|
|
|
receive the current cell, the resource dict and the index of current cell as parameter.
|
|
|
|
|
|
You should return modified cell and resource dict.
|
|
|
"""
|
|
|
raise NotImplementedError('should be implemented by subclass')
|
|
|
return cell, other
|
|
|
|
|
|
|
|
|
class ActivatableTransformer(ConfigurableTransformers):
|
|
|
"""A simple ConfigurableTransformers that have an enabled flag
|
|
|
|
|
|
Inherit from that if you just want to have a transformer which is
|
|
|
no-op by default but can be activated in profiles with
|
|
|
|
|
|
c.YourTransformerName.enabled = True
|
|
|
"""
|
|
|
|
|
|
enabled = Bool(False, config=True)
|
|
|
|
|
|
def __call__(self, nb, other):
|
|
|
if not self.enabled :
|
|
|
return nb, other
|
|
|
else :
|
|
|
return super(ActivatableTransformer, self).__call__(nb, other)
|
|
|
|
|
|
|
|
|
def cell_preprocessor(function):
|
|
|
""" wrap a function to be executed on all cells of a notebook
|
|
|
|
|
|
wrapped function parameters :
|
|
|
cell : the cell
|
|
|
other : external resources
|
|
|
index : index of the cell
|
|
|
"""
|
|
|
def wrappedfunc(nb, other):
|
|
|
for worksheet in nb.worksheets :
|
|
|
for index, cell in enumerate(worksheet.cells):
|
|
|
worksheet.cells[index], other = function(cell, other, index)
|
|
|
return nb, other
|
|
|
return wrappedfunc
|
|
|
|
|
|
|
|
|
@cell_preprocessor
|
|
|
def haspyout_transformer(cell, other, count):
|
|
|
"""
|
|
|
Add a haspyout flag to cell that have it
|
|
|
|
|
|
Easier for templating, where you can't know in advance
|
|
|
wether to write the out prompt
|
|
|
|
|
|
"""
|
|
|
cell.type = cell.cell_type
|
|
|
cell.haspyout = False
|
|
|
for out in cell.get('outputs', []):
|
|
|
if out.output_type == 'pyout':
|
|
|
cell.haspyout = True
|
|
|
break
|
|
|
return cell, other
|
|
|
|
|
|
@cell_preprocessor
|
|
|
def coalesce_streams(cell, other, count):
|
|
|
"""merge consecutive sequences of stream output into single stream
|
|
|
|
|
|
to prevent extra newlines inserted at flush calls
|
|
|
|
|
|
TODO: handle \r deletion
|
|
|
"""
|
|
|
outputs = cell.get('outputs', [])
|
|
|
if not outputs:
|
|
|
return cell, other
|
|
|
new_outputs = []
|
|
|
last = outputs[0]
|
|
|
new_outputs = [last]
|
|
|
for output in outputs[1:]:
|
|
|
if (output.output_type == 'stream' and
|
|
|
last.output_type == 'stream' and
|
|
|
last.stream == output.stream
|
|
|
):
|
|
|
last.text += output.text
|
|
|
else:
|
|
|
new_outputs.append(output)
|
|
|
|
|
|
cell.outputs = new_outputs
|
|
|
return cell, other
|
|
|
|
|
|
class ExtractFigureTransformer(ActivatableTransformer):
|
|
|
|
|
|
|
|
|
extra_ext_map = Dict({},
|
|
|
config=True,
|
|
|
help="""extra map to override extension based on type.
|
|
|
Usefull for latex where svg will be converted to pdf before inclusion
|
|
|
"""
|
|
|
)
|
|
|
|
|
|
key_format_map = Dict({},
|
|
|
config=True,
|
|
|
)
|
|
|
|
|
|
figname_format_map = Dict({},
|
|
|
config=True,
|
|
|
)
|
|
|
|
|
|
|
|
|
#to do change this to .format {} syntax
|
|
|
default_key_tpl = Unicode('_fig_{count:02d}.{ext}', config=True)
|
|
|
|
|
|
def _get_ext(self, ext):
|
|
|
if ext in self.extra_ext_map :
|
|
|
return self.extra_ext_map[ext]
|
|
|
return ext
|
|
|
|
|
|
def _new_figure(self, data, fmt, count):
|
|
|
"""Create a new figure file in the given format.
|
|
|
|
|
|
"""
|
|
|
tplf = self.figname_format_map.get(fmt, self.default_key_tpl)
|
|
|
tplk = self.key_format_map.get(fmt, self.default_key_tpl)
|
|
|
|
|
|
# option to pass the hash as data ?
|
|
|
figname = tplf.format(count=count, ext=self._get_ext(fmt))
|
|
|
key = tplk.format(count=count, ext=self._get_ext(fmt))
|
|
|
|
|
|
# Binary files are base64-encoded, SVG is already XML
|
|
|
binary = False
|
|
|
if fmt in ('png', 'jpg', 'pdf'):
|
|
|
data = data.decode('base64')
|
|
|
binary = True
|
|
|
|
|
|
return figname, key, data, binary
|
|
|
|
|
|
|
|
|
def cell_transform(self, cell, other, count):
|
|
|
if other.get('figures', None) is None :
|
|
|
other['figures'] = {'text':{},'binary':{}}
|
|
|
for out in cell.get('outputs', []):
|
|
|
for out_type in self.display_data_priority:
|
|
|
if out.hasattr(out_type):
|
|
|
figname, key, data, binary = self._new_figure(out[out_type], out_type, count)
|
|
|
out['key_'+out_type] = figname
|
|
|
if binary :
|
|
|
other['figures']['binary'][key] = data
|
|
|
else :
|
|
|
other['figures']['text'][key] = data
|
|
|
count = count+1
|
|
|
return cell, other
|
|
|
|
|
|
|
|
|
class RevealHelpTransformer(ConfigurableTransformers):
|
|
|
|
|
|
def __call__(self, nb, other):
|
|
|
for worksheet in nb.worksheets :
|
|
|
for i, cell in enumerate(worksheet.cells):
|
|
|
if not cell.get('metadata', None):
|
|
|
break
|
|
|
cell.metadata.slide_type = cell.metadata.get('slideshow', {}).get('slide_type', None)
|
|
|
if cell.metadata.slide_type is None:
|
|
|
cell.metadata.slide_type = '-'
|
|
|
if cell.metadata.slide_type in ['slide']:
|
|
|
worksheet.cells[i - 1].metadata.slide_helper = 'slide_end'
|
|
|
if cell.metadata.slide_type in ['subslide']:
|
|
|
worksheet.cells[i - 1].metadata.slide_helper = 'subslide_end'
|
|
|
return nb, other
|
|
|
|
|
|
|
|
|
class CSSHtmlHeaderTransformer(ActivatableTransformer):
|
|
|
|
|
|
def __call__(self, nb, resources):
|
|
|
"""Fetch and add css to the resource dict
|
|
|
|
|
|
Fetch css from IPython adn Pygment to add at the beginning
|
|
|
of the html files.
|
|
|
|
|
|
Add this css in resources in the "inlining.css" key
|
|
|
"""
|
|
|
resources['inlining'] = {}
|
|
|
resources['inlining']['css'] = self.header
|
|
|
return nb, resources
|
|
|
|
|
|
header = []
|
|
|
|
|
|
def __init__(self, config=None, **kw):
|
|
|
super(CSSHtmlHeaderTransformer, self).__init__(config=config, **kw)
|
|
|
if self.enabled :
|
|
|
self.regen_header()
|
|
|
|
|
|
def regen_header(self):
|
|
|
## lazy load asa this might not be use in many transformers
|
|
|
import os
|
|
|
from IPython.utils import path
|
|
|
import io
|
|
|
from pygments.formatters import HtmlFormatter
|
|
|
header = []
|
|
|
static = os.path.join(path.get_ipython_package_dir(),
|
|
|
'frontend', 'html', 'notebook', 'static',
|
|
|
)
|
|
|
here = os.path.split(os.path.realpath(__file__))[0]
|
|
|
css = os.path.join(static, 'css')
|
|
|
for sheet in [
|
|
|
# do we need jquery and prettify?
|
|
|
# os.path.join(static, 'jquery', 'css', 'themes', 'base',
|
|
|
# 'jquery-ui.min.css'),
|
|
|
# os.path.join(static, 'prettify', 'prettify.css'),
|
|
|
os.path.join(css, 'boilerplate.css'),
|
|
|
os.path.join(css, 'fbm.css'),
|
|
|
os.path.join(css, 'notebook.css'),
|
|
|
os.path.join(css, 'renderedhtml.css'),
|
|
|
os.path.join(css, 'style.min.css'),
|
|
|
]:
|
|
|
try:
|
|
|
with io.open(sheet, encoding='utf-8') as f:
|
|
|
s = f.read()
|
|
|
header.append(s)
|
|
|
except IOError:
|
|
|
# new version of ipython with style.min.css, pass
|
|
|
pass
|
|
|
|
|
|
pygments_css = HtmlFormatter().get_style_defs('.highlight')
|
|
|
header.append(pygments_css)
|
|
|
self.header = header
|
|
|
|
|
|
|