##// END OF EJS Templates
Merge pull request #5942 from jdfreder/i5655...
Merge pull request #5942 from jdfreder/i5655 nbconvert: Inline user custom CSS if it's defined.

File last commit:

r15588:ba5c31bf
r16852:bd89ec39 merge
Show More
jsonutil.py
263 lines | 8.3 KiB | text/x-python | PythonLexer
"""Utilities to manipulate JSON objects.
"""
#-----------------------------------------------------------------------------
# Copyright (C) 2010-2011 The IPython Development Team
#
# Distributed under the terms of the BSD License. The full license is in
# the file COPYING.txt, distributed as part of this software.
#-----------------------------------------------------------------------------
#-----------------------------------------------------------------------------
# Imports
#-----------------------------------------------------------------------------
# stdlib
import math
import re
import types
from datetime import datetime
try:
# base64.encodestring is deprecated in Python 3.x
from base64 import encodebytes
except ImportError:
# Python 2.x
from base64 import encodestring as encodebytes
from IPython.utils import py3compat
from IPython.utils.py3compat import string_types, unicode_type, iteritems
from IPython.utils.encoding import DEFAULT_ENCODING
next_attr_name = '__next__' if py3compat.PY3 else 'next'
#-----------------------------------------------------------------------------
# Globals and constants
#-----------------------------------------------------------------------------
# timestamp formats
ISO8601 = "%Y-%m-%dT%H:%M:%S.%f"
ISO8601_PAT=re.compile(r"^(\d{4}-\d{2}-\d{2}T\d{2}:\d{2}:\d{2})(\.\d{1,6})?Z?([\+\-]\d{2}:?\d{2})?$")
# holy crap, strptime is not threadsafe.
# Calling it once at import seems to help.
datetime.strptime("1", "%d")
#-----------------------------------------------------------------------------
# Classes and functions
#-----------------------------------------------------------------------------
def rekey(dikt):
"""Rekey a dict that has been forced to use str keys where there should be
ints by json."""
for k in dikt:
if isinstance(k, string_types):
ik=fk=None
try:
ik = int(k)
except ValueError:
try:
fk = float(k)
except ValueError:
continue
if ik is not None:
nk = ik
else:
nk = fk
if nk in dikt:
raise KeyError("already have key %r"%nk)
dikt[nk] = dikt.pop(k)
return dikt
def parse_date(s):
"""parse an ISO8601 date string
If it is None or not a valid ISO8601 timestamp,
it will be returned unmodified.
Otherwise, it will return a datetime object.
"""
if s is None:
return s
m = ISO8601_PAT.match(s)
if m:
# FIXME: add actual timezone support
# this just drops the timezone info
notz, ms, tz = m.groups()
if not ms:
ms = '.0'
notz = notz + ms
return datetime.strptime(notz, ISO8601)
return s
def extract_dates(obj):
"""extract ISO8601 dates from unpacked JSON"""
if isinstance(obj, dict):
new_obj = {} # don't clobber
for k,v in iteritems(obj):
new_obj[k] = extract_dates(v)
obj = new_obj
elif isinstance(obj, (list, tuple)):
obj = [ extract_dates(o) for o in obj ]
elif isinstance(obj, string_types):
obj = parse_date(obj)
return obj
def squash_dates(obj):
"""squash datetime objects into ISO8601 strings"""
if isinstance(obj, dict):
obj = dict(obj) # don't clobber
for k,v in iteritems(obj):
obj[k] = squash_dates(v)
elif isinstance(obj, (list, tuple)):
obj = [ squash_dates(o) for o in obj ]
elif isinstance(obj, datetime):
obj = obj.isoformat()
return obj
def date_default(obj):
"""default function for packing datetime objects in JSON."""
if isinstance(obj, datetime):
return obj.isoformat()
else:
raise TypeError("%r is not JSON serializable"%obj)
# constants for identifying png/jpeg data
PNG = b'\x89PNG\r\n\x1a\n'
# front of PNG base64-encoded
PNG64 = b'iVBORw0KG'
JPEG = b'\xff\xd8'
# front of JPEG base64-encoded
JPEG64 = b'/9'
# front of PDF base64-encoded
PDF64 = b'JVBER'
def encode_images(format_dict):
"""b64-encodes images in a displaypub format dict
Perhaps this should be handled in json_clean itself?
Parameters
----------
format_dict : dict
A dictionary of display data keyed by mime-type
Returns
-------
format_dict : dict
A copy of the same dictionary,
but binary image data ('image/png', 'image/jpeg' or 'application/pdf')
is base64-encoded.
"""
encoded = format_dict.copy()
pngdata = format_dict.get('image/png')
if isinstance(pngdata, bytes):
# make sure we don't double-encode
if not pngdata.startswith(PNG64):
pngdata = encodebytes(pngdata)
encoded['image/png'] = pngdata.decode('ascii')
jpegdata = format_dict.get('image/jpeg')
if isinstance(jpegdata, bytes):
# make sure we don't double-encode
if not jpegdata.startswith(JPEG64):
jpegdata = encodebytes(jpegdata)
encoded['image/jpeg'] = jpegdata.decode('ascii')
pdfdata = format_dict.get('application/pdf')
if isinstance(pdfdata, bytes):
# make sure we don't double-encode
if not pdfdata.startswith(PDF64):
pdfdata = encodebytes(pdfdata)
encoded['application/pdf'] = pdfdata.decode('ascii')
return encoded
def json_clean(obj):
"""Clean an object to ensure it's safe to encode in JSON.
Atomic, immutable objects are returned unmodified. Sets and tuples are
converted to lists, lists are copied and dicts are also copied.
Note: dicts whose keys could cause collisions upon encoding (such as a dict
with both the number 1 and the string '1' as keys) will cause a ValueError
to be raised.
Parameters
----------
obj : any python object
Returns
-------
out : object
A version of the input which will not cause an encoding error when
encoded as JSON. Note that this function does not *encode* its inputs,
it simply sanitizes it so that there will be no encoding errors later.
Examples
--------
>>> json_clean(4)
4
>>> json_clean(list(range(10)))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> sorted(json_clean(dict(x=1, y=2)).items())
[('x', 1), ('y', 2)]
>>> sorted(json_clean(dict(x=1, y=2, z=[1,2,3])).items())
[('x', 1), ('y', 2), ('z', [1, 2, 3])]
>>> json_clean(True)
True
"""
# types that are 'atomic' and ok in json as-is.
atomic_ok = (unicode_type, type(None))
# containers that we need to convert into lists
container_to_list = (tuple, set, types.GeneratorType)
if isinstance(obj, float):
# cast out-of-range floats to their reprs
if math.isnan(obj) or math.isinf(obj):
return repr(obj)
return float(obj)
if isinstance(obj, int):
# cast int to int, in case subclasses override __str__ (e.g. boost enum, #4598)
if isinstance(obj, bool):
# bools are ints, but we don't want to cast them to 0,1
return obj
return int(obj)
if isinstance(obj, atomic_ok):
return obj
if isinstance(obj, bytes):
return obj.decode(DEFAULT_ENCODING, 'replace')
if isinstance(obj, container_to_list) or (
hasattr(obj, '__iter__') and hasattr(obj, next_attr_name)):
obj = list(obj)
if isinstance(obj, list):
return [json_clean(x) for x in obj]
if isinstance(obj, dict):
# First, validate that the dict won't lose data in conversion due to
# key collisions after stringification. This can happen with keys like
# True and 'true' or 1 and '1', which collide in JSON.
nkeys = len(obj)
nkeys_collapsed = len(set(map(str, obj)))
if nkeys != nkeys_collapsed:
raise ValueError('dict can not be safely converted to JSON: '
'key collision would lead to dropped values')
# If all OK, proceed by making the new dict that will be json-safe
out = {}
for k,v in iteritems(obj):
out[str(k)] = json_clean(v)
return out
# If we get here, we don't know how to handle the object, so we just get
# its repr and return that. This will catch lambdas, open sockets, class
# objects, and any other complicated contraption that json can't encode
return repr(obj)