|
|
"""Compute statistics on the digits of pi.
|
|
|
|
|
|
This uses precomputed digits of pi from the website
|
|
|
of Professor Yasumasa Kanada at the University of
|
|
|
Tokoyo: http://www.super-computing.org/
|
|
|
|
|
|
Currently, there are only functions to read the
|
|
|
.txt (non-compressed, non-binary) files, but adding
|
|
|
support for compression and binary files would be
|
|
|
straightforward.
|
|
|
|
|
|
This focuses on computing the number of times that
|
|
|
all 1, 2, n digits sequences occur in the digits of pi.
|
|
|
If the digits of pi are truly random, these frequencies
|
|
|
should be equal.
|
|
|
"""
|
|
|
|
|
|
# Import statements
|
|
|
|
|
|
from __future__ import division, with_statement
|
|
|
import numpy as np
|
|
|
from matplotlib import pyplot as plt
|
|
|
|
|
|
# Top-level functions
|
|
|
|
|
|
def compute_one_digit_freqs(filename):
|
|
|
"""
|
|
|
Read digits of pi from a file and compute the 1 digit frequencies.
|
|
|
"""
|
|
|
d = txt_file_to_digits(filename)
|
|
|
freqs = one_digit_freqs(d)
|
|
|
return freqs
|
|
|
|
|
|
def compute_two_digit_freqs(filename):
|
|
|
"""
|
|
|
Read digits of pi from a file and compute the 2 digit frequencies.
|
|
|
"""
|
|
|
d = txt_file_to_digits(filename)
|
|
|
freqs = two_digit_freqs(d)
|
|
|
return freqs
|
|
|
|
|
|
def reduce_freqs(freqlist):
|
|
|
"""
|
|
|
Add up a list of freq counts to get the total counts.
|
|
|
"""
|
|
|
allfreqs = np.zeros_like(freqlist[0])
|
|
|
for f in freqlist:
|
|
|
allfreqs += f
|
|
|
return allfreqs
|
|
|
|
|
|
def compute_n_digit_freqs(filename, n):
|
|
|
"""
|
|
|
Read digits of pi from a file and compute the n digit frequencies.
|
|
|
"""
|
|
|
d = txt_file_to_digits(filename)
|
|
|
freqs = n_digit_freqs(d, n)
|
|
|
return freqs
|
|
|
|
|
|
# Read digits from a txt file
|
|
|
|
|
|
def txt_file_to_digits(filename, the_type=str):
|
|
|
"""
|
|
|
Yield the digits of pi read from a .txt file.
|
|
|
"""
|
|
|
with open(filename, 'r') as f:
|
|
|
for line in f.readlines():
|
|
|
for c in line:
|
|
|
if c != '\n' and c!= ' ':
|
|
|
yield the_type(c)
|
|
|
|
|
|
# Actual counting functions
|
|
|
|
|
|
def one_digit_freqs(digits, normalize=False):
|
|
|
"""
|
|
|
Consume digits of pi and compute 1 digit freq. counts.
|
|
|
"""
|
|
|
freqs = np.zeros(10, dtype='i4')
|
|
|
for d in digits:
|
|
|
freqs[int(d)] += 1
|
|
|
if normalize:
|
|
|
freqs = freqs/freqs.sum()
|
|
|
return freqs
|
|
|
|
|
|
def two_digit_freqs(digits, normalize=False):
|
|
|
"""
|
|
|
Consume digits of pi and compute 2 digits freq. counts.
|
|
|
"""
|
|
|
freqs = np.zeros(100, dtype='i4')
|
|
|
last = digits.next()
|
|
|
this = digits.next()
|
|
|
for d in digits:
|
|
|
index = int(last + this)
|
|
|
freqs[index] += 1
|
|
|
last = this
|
|
|
this = d
|
|
|
if normalize:
|
|
|
freqs = freqs/freqs.sum()
|
|
|
return freqs
|
|
|
|
|
|
def n_digit_freqs(digits, n, normalize=False):
|
|
|
"""
|
|
|
Consume digits of pi and compute n digits freq. counts.
|
|
|
|
|
|
This should only be used for 1-6 digits.
|
|
|
"""
|
|
|
freqs = np.zeros(pow(10,n), dtype='i4')
|
|
|
current = np.zeros(n, dtype=int)
|
|
|
for i in range(n):
|
|
|
current[i] = digits.next()
|
|
|
for d in digits:
|
|
|
index = int(''.join(map(str, current)))
|
|
|
freqs[index] += 1
|
|
|
current[0:-1] = current[1:]
|
|
|
current[-1] = d
|
|
|
if normalize:
|
|
|
freqs = freqs/freqs.sum()
|
|
|
return freqs
|
|
|
|
|
|
# Plotting functions
|
|
|
|
|
|
def plot_two_digit_freqs(f2):
|
|
|
"""
|
|
|
Plot two digits frequency counts using matplotlib.
|
|
|
"""
|
|
|
f2_copy = f2.copy()
|
|
|
f2_copy.shape = (10,10)
|
|
|
ax = plt.matshow(f2_copy)
|
|
|
plt.colorbar()
|
|
|
for i in range(10):
|
|
|
for j in range(10):
|
|
|
plt.text(i-0.2, j+0.2, str(j)+str(i))
|
|
|
plt.ylabel('First digit')
|
|
|
plt.xlabel('Second digit')
|
|
|
return ax
|
|
|
|
|
|
def plot_one_digit_freqs(f1):
|
|
|
"""
|
|
|
Plot one digit frequency counts using matplotlib.
|
|
|
"""
|
|
|
ax = plt.plot(f1,'bo-')
|
|
|
plt.title('Single digit counts in pi')
|
|
|
plt.xlabel('Digit')
|
|
|
plt.ylabel('Count')
|
|
|
return ax
|
|
|
|