##// END OF EJS Templates
Add ipythonqt script to main list of user-installed scripts.
Add ipythonqt script to main list of user-installed scripts.

File last commit:

r2498:3eae1372
r2922:cccb294d
Show More
mapper.py
231 lines | 8.4 KiB | text/x-python | PythonLexer
# encoding: utf-8
"""A parallelized version of Python's builtin map."""
__docformat__ = "restructuredtext en"
#----------------------------------------------------------------------------
# Copyright (C) 2008 The IPython Development Team
#
# Distributed under the terms of the BSD License. The full license is in
# the file COPYING, distributed as part of this software.
#----------------------------------------------------------------------------
#----------------------------------------------------------------------------
# Imports
#----------------------------------------------------------------------------
from types import FunctionType
from zope.interface import Interface, implements
from IPython.kernel.task import MapTask
from IPython.kernel.twistedutil import gatherBoth
from IPython.kernel.error import collect_exceptions
#----------------------------------------------------------------------------
# Code
#----------------------------------------------------------------------------
class IMapper(Interface):
"""The basic interface for a Mapper.
This defines a generic interface for mapping. The idea of this is
similar to that of Python's builtin `map` function, which applies a function
elementwise to a sequence.
"""
def map(func, *seqs):
"""Do map in parallel.
Equivalent to map(func, *seqs) or:
[func(seqs[0][0], seqs[1][0],...), func(seqs[0][1], seqs[1][1],...),...]
:Parameters:
func : FunctionType
The function to apply to the sequence
sequences : tuple of iterables
A sequence of iterables that are used for sucessive function
arguments. This work just like map
"""
class IMultiEngineMapperFactory(Interface):
"""
An interface for something that creates `IMapper` instances.
"""
def mapper(dist='b', targets='all', block=True):
"""
Create an `IMapper` implementer with a given set of arguments.
The `IMapper` created using a multiengine controller is
not load balanced.
"""
class ITaskMapperFactory(Interface):
"""
An interface for something that creates `IMapper` instances.
"""
def mapper(clear_before=False, clear_after=False, retries=0,
recovery_task=None, depend=None, block=True):
"""
Create an `IMapper` implementer with a given set of arguments.
The `IMapper` created using a task controller is load balanced.
See the documentation for `IPython.kernel.task.BaseTask` for
documentation on the arguments to this method.
"""
class MultiEngineMapper(object):
"""
A Mapper for `IMultiEngine` implementers.
"""
implements(IMapper)
def __init__(self, multiengine, dist='b', targets='all', block=True):
"""
Create a Mapper for a multiengine.
The value of all arguments are used for all calls to `map`. This
class allows these arguemnts to be set for a series of map calls.
:Parameters:
multiengine : `IMultiEngine` implementer
The multiengine to use for running the map commands
dist : str
The type of decomposition to use. Only block ('b') is
supported currently
targets : (str, int, tuple of ints)
The engines to use in the map
block : boolean
Whether to block when the map is applied
"""
self.multiengine = multiengine
self.dist = dist
self.targets = targets
self.block = block
def map(self, func, *sequences):
"""
Apply func to *sequences elementwise. Like Python's builtin map.
This version is not load balanced.
"""
max_len = max(len(s) for s in sequences)
for s in sequences:
if len(s)!=max_len:
raise ValueError('all sequences must have equal length')
assert isinstance(func, (str, FunctionType)), "func must be a fuction or str"
return self.multiengine.raw_map(func, sequences, dist=self.dist,
targets=self.targets, block=self.block)
class TaskMapper(object):
"""
Make an `ITaskController` look like an `IMapper`.
This class provides a load balanced version of `map`.
"""
def __init__(self, task_controller, clear_before=False, clear_after=False, retries=0,
recovery_task=None, depend=None, block=True):
"""
Create a `IMapper` given a `TaskController` and arguments.
The additional arguments are those that are common to all types of
tasks and are described in the documentation for
`IPython.kernel.task.BaseTask`.
:Parameters:
task_controller : an `IBlockingTaskClient` implementer
The `TaskController` to use for calls to `map`
"""
self.task_controller = task_controller
self.clear_before = clear_before
self.clear_after = clear_after
self.retries = retries
self.recovery_task = recovery_task
self.depend = depend
self.block = block
def map(self, func, *sequences):
"""
Apply func to *sequences elementwise. Like Python's builtin map.
This version is load balanced.
"""
max_len = max(len(s) for s in sequences)
for s in sequences:
if len(s)!=max_len:
raise ValueError('all sequences must have equal length')
task_args = zip(*sequences)
task_ids = []
dlist = []
for ta in task_args:
task = MapTask(func, ta, clear_before=self.clear_before,
clear_after=self.clear_after, retries=self.retries,
recovery_task=self.recovery_task, depend=self.depend)
dlist.append(self.task_controller.run(task))
dlist = gatherBoth(dlist, consumeErrors=1)
dlist.addCallback(collect_exceptions,'map')
if self.block:
def get_results(task_ids):
d = self.task_controller.barrier(task_ids)
d.addCallback(lambda _: gatherBoth([self.task_controller.get_task_result(tid) for tid in task_ids], consumeErrors=1))
d.addCallback(collect_exceptions, 'map')
return d
dlist.addCallback(get_results)
return dlist
class SynchronousTaskMapper(object):
"""
Make an `IBlockingTaskClient` look like an `IMapper`.
This class provides a load balanced version of `map`.
"""
def __init__(self, task_controller, clear_before=False, clear_after=False, retries=0,
recovery_task=None, depend=None, block=True):
"""
Create a `IMapper` given a `IBlockingTaskClient` and arguments.
The additional arguments are those that are common to all types of
tasks and are described in the documentation for
`IPython.kernel.task.BaseTask`.
:Parameters:
task_controller : an `IBlockingTaskClient` implementer
The `TaskController` to use for calls to `map`
"""
self.task_controller = task_controller
self.clear_before = clear_before
self.clear_after = clear_after
self.retries = retries
self.recovery_task = recovery_task
self.depend = depend
self.block = block
def map(self, func, *sequences):
"""
Apply func to *sequences elementwise. Like Python's builtin map.
This version is load balanced.
"""
max_len = max(len(s) for s in sequences)
for s in sequences:
if len(s)!=max_len:
raise ValueError('all sequences must have equal length')
task_args = zip(*sequences)
task_ids = []
for ta in task_args:
task = MapTask(func, ta, clear_before=self.clear_before,
clear_after=self.clear_after, retries=self.retries,
recovery_task=self.recovery_task, depend=self.depend)
task_ids.append(self.task_controller.run(task))
if self.block:
self.task_controller.barrier(task_ids)
task_results = [self.task_controller.get_task_result(tid) for tid in task_ids]
return task_results
else:
return task_ids