##// END OF EJS Templates
correct static path for CM modes autoload...
correct static path for CM modes autoload this shoudl also allow to require CM python mode for ipython mode and only pass a config options.

File last commit:

r11086:c137395d
r11236:cd4fbcb1
Show More
coalescestreams.py
75 lines | 2.4 KiB | text/x-python | PythonLexer
"""Module that allows latex output notebooks to be conditioned before
they are converted. Exposes a decorator (@cell_preprocessor) in
addition to the coalesce_streams pre-proccessor.
"""
#-----------------------------------------------------------------------------
# Copyright (c) 2013, the IPython Development Team.
#
# Distributed under the terms of the Modified BSD License.
#
# The full license is in the file COPYING.txt, distributed with this software.
#-----------------------------------------------------------------------------
#-----------------------------------------------------------------------------
# Functions
#-----------------------------------------------------------------------------
def cell_preprocessor(function):
"""
Wrap a function to be executed on all cells of a notebook
Wrapped Parameters
----------
cell : NotebookNode cell
Notebook cell being processed
resources : dictionary
Additional resources used in the conversion process. Allows
transformers to pass variables into the Jinja engine.
index : int
Index of the cell being processed
"""
def wrappedfunc(nb, resources):
for worksheet in nb.worksheets :
for index, cell in enumerate(worksheet.cells):
worksheet.cells[index], resources = function(cell, resources, index)
return nb, resources
return wrappedfunc
@cell_preprocessor
def coalesce_streams(cell, resources, index):
"""
Merge consecutive sequences of stream output into single stream
to prevent extra newlines inserted at flush calls
Parameters
----------
cell : NotebookNode cell
Notebook cell being processed
resources : dictionary
Additional resources used in the conversion process. Allows
transformers to pass variables into the Jinja engine.
index : int
Index of the cell being processed
"""
outputs = cell.get('outputs', [])
if not outputs:
return cell, resources
last = outputs[0]
new_outputs = [last]
for output in outputs[1:]:
if (output.output_type == 'stream' and
last.output_type == 'stream' and
last.stream == output.stream
):
last.text += output.text
else:
new_outputs.append(output)
cell.outputs = new_outputs
return cell, resources