##// END OF EJS Templates
refactor to improve cell switching in edit mode...
refactor to improve cell switching in edit mode This code was repeated in both CodeCell and TextCell, both of which are extensions of Cell, so this just unifies the logic in Cell. TextCell had logic here to check if the cell was rendered or not, but I don't believe it is possible to end up triggering such a code path. (Should that be required, I can always just add back these methods to TextCell, performing the .rendered==True check, and calling the Cell prior to this, code mirror at_top would only return true on if the cursor was at the first character of the top line. Now, pressing up arrow on any character on the top line will take you to the cell above. The same applies for the bottom line. Pressing down arrow would only go to the next cell if the cursor was at a location *after* the last character (something that is only possible to achieve in vim mode if the last line is empty, for example). Now, down arrow on any character of the last line will go to the next cell.

File last commit:

r13356:0a3c3bee
r15754:d60e793e
Show More
data.py
37 lines | 1.2 KiB | text/x-python | PythonLexer
# encoding: utf-8
"""Utilities for working with data structures like lists, dicts and tuples.
"""
#-----------------------------------------------------------------------------
# Copyright (C) 2008-2011 The IPython Development Team
#
# Distributed under the terms of the BSD License. The full license is in
# the file COPYING, distributed as part of this software.
#-----------------------------------------------------------------------------
from .py3compat import xrange
def uniq_stable(elems):
"""uniq_stable(elems) -> list
Return from an iterable, a list of all the unique elements in the input,
but maintaining the order in which they first appear.
Note: All elements in the input must be hashable for this routine
to work, as it internally uses a set for efficiency reasons.
"""
seen = set()
return [x for x in elems if x not in seen and not seen.add(x)]
def flatten(seq):
"""Flatten a list of lists (NOT recursive, only works for 2d lists)."""
return [x for subseq in seq for x in subseq]
def chop(seq, size):
"""Chop a sequence into chunks of the given size."""
return [seq[i:i+size] for i in xrange(0,len(seq),size)]