##// END OF EJS Templates
Merge pull request #8679 from ndunn219/patch-1...
Merge pull request #8679 from ndunn219/patch-1 Update JavaScript Notebook Extensions.ipynb

File last commit:

r20277:6ceb4492
r21560:db1266a5 merge
Show More
parallelwave-mpi.py
205 lines | 6.5 KiB | text/x-python | PythonLexer
#!/usr/bin/env python
"""
A simple python program of solving a 2D wave equation in parallel.
Domain partitioning and inter-processor communication
are done by an object of class MPIRectPartitioner2D
(which is a subclass of RectPartitioner2D and uses MPI via mpi4py)
An example of running the program is (8 processors, 4x2 partition,
400x100 grid cells)::
$ ipcluster start --engines=MPIExec -n 8 # start 8 engines with mpiexec
$ python parallelwave-mpi.py --grid 400 100 --partition 4 2
See also parallelwave-mpi, which runs the same program, but uses MPI
(via mpi4py) for the inter-engine communication.
Authors
-------
* Xing Cai
* Min Ragan-Kelley
"""
import sys
import time
from numpy import exp, zeros, newaxis, sqrt
from IPython.external import argparse
from IPython.parallel import Client, Reference
def setup_partitioner(index, num_procs, gnum_cells, parts):
"""create a partitioner in the engine namespace"""
global partitioner
p = MPIRectPartitioner2D(my_id=index, num_procs=num_procs)
p.redim(global_num_cells=gnum_cells, num_parts=parts)
p.prepare_communication()
# put the partitioner into the global namespace:
partitioner=p
def setup_solver(*args, **kwargs):
"""create a WaveSolver in the engine namespace"""
global solver
solver = WaveSolver(*args, **kwargs)
def wave_saver(u, x, y, t):
"""save the wave log"""
global u_hist
global t_hist
t_hist.append(t)
u_hist.append(1.0*u)
# main program:
if __name__ == '__main__':
parser = argparse.ArgumentParser()
paa = parser.add_argument
paa('--grid', '-g',
type=int, nargs=2, default=[100,100], dest='grid',
help="Cells in the grid, e.g. --grid 100 200")
paa('--partition', '-p',
type=int, nargs=2, default=None,
help="Process partition grid, e.g. --partition 4 2 for 4x2")
paa('-c',
type=float, default=1.,
help="Wave speed (I think)")
paa('-Ly',
type=float, default=1.,
help="system size (in y)")
paa('-Lx',
type=float, default=1.,
help="system size (in x)")
paa('-t', '--tstop',
type=float, default=1.,
help="Time units to run")
paa('--profile',
type=unicode, default=u'default',
help="Specify the ipcluster profile for the client to connect to.")
paa('--save',
action='store_true',
help="Add this flag to save the time/wave history during the run.")
paa('--scalar',
action='store_true',
help="Also run with scalar interior implementation, to see vector speedup.")
ns = parser.parse_args()
# set up arguments
grid = ns.grid
partition = ns.partition
Lx = ns.Lx
Ly = ns.Ly
c = ns.c
tstop = ns.tstop
if ns.save:
user_action = wave_saver
else:
user_action = None
num_cells = 1.0*(grid[0]-1)*(grid[1]-1)
final_test = True
# create the Client
rc = Client(profile=ns.profile)
num_procs = len(rc.ids)
if partition is None:
partition = [1,num_procs]
assert partition[0]*partition[1] == num_procs, "can't map partition %s to %i engines"%(partition, num_procs)
view = rc[:]
print("Running %s system on %s processes until %f" % (grid, partition, tstop))
# functions defining initial/boundary/source conditions
def I(x,y):
from numpy import exp
return 1.5*exp(-100*((x-0.5)**2+(y-0.5)**2))
def f(x,y,t):
return 0.0
# from numpy import exp,sin
# return 10*exp(-(x - sin(100*t))**2)
def bc(x,y,t):
return 0.0
# initial imports, setup rank
view.execute('\n'.join([
"from mpi4py import MPI",
"import numpy",
"mpi = MPI.COMM_WORLD",
"my_id = MPI.COMM_WORLD.Get_rank()"]), block=True)
# initialize t_hist/u_hist for saving the state at each step (optional)
view['t_hist'] = []
view['u_hist'] = []
# set vector/scalar implementation details
impl = {}
impl['ic'] = 'vectorized'
impl['inner'] = 'scalar'
impl['bc'] = 'vectorized'
# execute some files so that the classes we need will be defined on the engines:
view.run('RectPartitioner.py')
view.run('wavesolver.py')
# setup remote partitioner
# note that Reference means that the argument passed to setup_partitioner will be the
# object named 'my_id' in the engine's namespace
view.apply_sync(setup_partitioner, Reference('my_id'), num_procs, grid, partition)
# wait for initial communication to complete
view.execute('mpi.barrier()')
# setup remote solvers
view.apply_sync(setup_solver, I,f,c,bc,Lx,Ly,partitioner=Reference('partitioner'), dt=0,implementation=impl)
# lambda for calling solver.solve:
_solve = lambda *args, **kwargs: solver.solve(*args, **kwargs)
if ns.scalar:
impl['inner'] = 'scalar'
# run first with element-wise Python operations for each cell
t0 = time.time()
ar = view.apply_async(_solve, tstop, dt=0, verbose=True, final_test=final_test, user_action=user_action)
if final_test:
# this sum is performed element-wise as results finish
s = sum(ar)
# the L2 norm (RMS) of the result:
norm = sqrt(s/num_cells)
else:
norm = -1
t1 = time.time()
print('scalar inner-version, Wtime=%g, norm=%g' % (t1-t0, norm))
impl['inner'] = 'vectorized'
# setup new solvers
view.apply_sync(setup_solver, I,f,c,bc,Lx,Ly,partitioner=Reference('partitioner'), dt=0,implementation=impl)
view.execute('mpi.barrier()')
# run again with numpy vectorized inner-implementation
t0 = time.time()
ar = view.apply_async(_solve, tstop, dt=0, verbose=True, final_test=final_test, user_action=user_action)
if final_test:
# this sum is performed element-wise as results finish
s = sum(ar)
# the L2 norm (RMS) of the result:
norm = sqrt(s/num_cells)
else:
norm = -1
t1 = time.time()
print('vector inner-version, Wtime=%g, norm=%g' % (t1-t0, norm))
# if ns.save is True, then u_hist stores the history of u as a list
# If the partion scheme is Nx1, then u can be reconstructed via 'gather':
if ns.save and partition[-1] == 1:
import matplotlib.pyplot as plt
view.execute('u_last=u_hist[-1]')
# map mpi IDs to IPython IDs, which may not match
ranks = view['my_id']
targets = range(len(ranks))
for idx in range(len(ranks)):
targets[idx] = ranks.index(idx)
u_last = rc[targets].gather('u_last', block=True)
plt.pcolor(u_last)
plt.show()