Trapezoid Rule.ipynb
381 lines
| 24.0 KiB
| text/plain
|
TextLexer
Basic Numerical Integration: the Trapezoid Rule¶
A simple illustration of the trapezoid rule for definite integration:
$$ \int_{a}^{b} f(x)\, dx \approx \frac{1}{2} \sum_{k=1}^{N} \left( x_{k} - x_{k-1} \right) \left( f(x_{k}) + f(x_{k-1}) \right). $$First, we define a simple function and sample it between 0 and 10 at 200 points
In [1]:
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
In [2]:
def f(x):
return (x-3)*(x-5)*(x-7)+85
x = np.linspace(0, 10, 200)
y = f(x)
Choose a region to integrate over and take only a few points in that region
In [3]:
a, b = 1, 9
xint = x[np.logical_and(x>=a, x<=b)][::30]
yint = y[np.logical_and(x>=a, x<=b)][::30]
Plot both the function and the area below it in the trapezoid approximation
In [4]:
plt.plot(x, y, lw=2)
plt.axis([0, 10, 0, 140])
plt.fill_between(xint, 0, yint, facecolor='gray', alpha=0.4)
plt.text(0.5 * (a + b), 30,r"$\int_a^b f(x)dx$", horizontalalignment='center', fontsize=20);
Compute the integral both at high accuracy and with the trapezoid approximation
In [5]:
from __future__ import print_function
from scipy.integrate import quad, trapz
integral, error = quad(f, 1, 9)
print("The integral is:", integral, "+/-", error)
print("The trapezoid approximation with", len(xint), "points is:", trapz(yint, xint))