##// END OF EJS Templates
Add HighlightMagicsPreprocessor...
Add HighlightMagicsPreprocessor HighlightMagicsPreprocessor is in charge of detecting cells that use language extensions. It tags the cell metadata with the language used. Enable HighlightMagicsPreprocessor by default on latex and html exporters.

File last commit:

r12221:017ada76
r12573:e46115c2
Show More
base.py
111 lines | 3.7 KiB | text/x-python | PythonLexer
"""
Module that re-groups preprocessor that would be applied to ipynb files
before going through the templating machinery.
It exposes a convenient class to inherit from to access configurability.
"""
#-----------------------------------------------------------------------------
# Copyright (c) 2013, the IPython Development Team.
#
# Distributed under the terms of the Modified BSD License.
#
# The full license is in the file COPYING.txt, distributed with this software.
#-----------------------------------------------------------------------------
#-----------------------------------------------------------------------------
# Imports
#-----------------------------------------------------------------------------
from ..utils.base import NbConvertBase
from IPython.utils.traitlets import Bool
#-----------------------------------------------------------------------------
# Classes and Functions
#-----------------------------------------------------------------------------
class Preprocessor(NbConvertBase):
""" A configurable preprocessor
Inherit from this class if you wish to have configurability for your
preprocessor.
Any configurable traitlets this class exposed will be configurable in
profiles using c.SubClassName.atribute=value
you can overwrite :meth:`preprocess_cell` to apply a transformation
independently on each cell or :meth:`preprocess` if you prefer your own
logic. See corresponding docstring for informations.
Disabled by default and can be enabled via the config by
'c.YourPreprocessorName.enabled = True'
"""
enabled = Bool(False, config=True)
def __init__(self, **kw):
"""
Public constructor
Parameters
----------
config : Config
Configuration file structure
**kw : misc
Additional arguments
"""
super(Preprocessor, self).__init__(**kw)
def __call__(self, nb, resources):
if self.enabled:
return self.preprocess(nb,resources)
else:
return nb, resources
def preprocess(self, nb, resources):
"""
Preprocessing to apply on each notebook.
You should return modified nb, resources.
If you wish to apply your preprocessing to each cell, you might want
to overwrite preprocess_cell method instead.
Parameters
----------
nb : NotebookNode
Notebook being converted
resources : dictionary
Additional resources used in the conversion process. Allows
preprocessors to pass variables into the Jinja engine.
"""
self.log.debug("Applying preprocess: %s", self.__class__.__name__)
try :
for worksheet in nb.worksheets:
for index, cell in enumerate(worksheet.cells):
worksheet.cells[index], resources = self.preprocess_cell(cell, resources, index)
return nb, resources
except NotImplementedError:
raise NotImplementedError('should be implemented by subclass')
def preprocess_cell(self, cell, resources, index):
"""
Overwrite if you want to apply some preprocessing to each cell. You
should return modified cell and resource dictionary.
Parameters
----------
cell : NotebookNode cell
Notebook cell being processed
resources : dictionary
Additional resources used in the conversion process. Allows
preprocessors to pass variables into the Jinja engine.
index : int
Index of the cell being processed
"""
raise NotImplementedError('should be implemented by subclass')
return cell, resources