##// END OF EJS Templates
Removing unused code in the notebook MappingKernelManager....
Removing unused code in the notebook MappingKernelManager. This cleans up the API for restarts in the notebook's kernel manager classes.

File last commit:

r7811:d6009ff2 merge
r9033:e6371fe2
Show More
pickleshare.py
366 lines | 10.1 KiB | text/x-python | PythonLexer
#!/usr/bin/env python
""" PickleShare - a small 'shelve' like datastore with concurrency support
Like shelve, a PickleShareDB object acts like a normal dictionary. Unlike
shelve, many processes can access the database simultaneously. Changing a
value in database is immediately visible to other processes accessing the
same database.
Concurrency is possible because the values are stored in separate files. Hence
the "database" is a directory where *all* files are governed by PickleShare.
Example usage::
from pickleshare import *
db = PickleShareDB('~/testpickleshare')
db.clear()
print "Should be empty:",db.items()
db['hello'] = 15
db['aku ankka'] = [1,2,313]
db['paths/are/ok/key'] = [1,(5,46)]
print db.keys()
del db['aku ankka']
This module is certainly not ZODB, but can be used for low-load
(non-mission-critical) situations where tiny code size trumps the
advanced features of a "real" object database.
Installation guide: easy_install pickleshare
Author: Ville Vainio <vivainio@gmail.com>
License: MIT open source license.
"""
from IPython.external.path import path as Path
import os,stat,time
import collections
import cPickle as pickle
import glob
def gethashfile(key):
return ("%02x" % abs(hash(key) % 256))[-2:]
_sentinel = object()
class PickleShareDB(collections.MutableMapping):
""" The main 'connection' object for PickleShare database """
def __init__(self,root):
""" Return a db object that will manage the specied directory"""
self.root = Path(root).expanduser().abspath()
if not self.root.isdir():
self.root.makedirs()
# cache has { 'key' : (obj, orig_mod_time) }
self.cache = {}
def __getitem__(self,key):
""" db['key'] reading """
fil = self.root / key
try:
mtime = (fil.stat()[stat.ST_MTIME])
except OSError:
raise KeyError(key)
if fil in self.cache and mtime == self.cache[fil][1]:
return self.cache[fil][0]
try:
# The cached item has expired, need to read
with fil.open("rb") as f:
obj = pickle.loads(f.read())
except:
raise KeyError(key)
self.cache[fil] = (obj,mtime)
return obj
def __setitem__(self,key,value):
""" db['key'] = 5 """
fil = self.root / key
parent = fil.parent
if parent and not parent.isdir():
parent.makedirs()
# We specify protocol 2, so that we can mostly go between Python 2
# and Python 3. We can upgrade to protocol 3 when Python 2 is obsolete.
with fil.open('wb') as f:
pickled = pickle.dump(value, f, protocol=2)
try:
self.cache[fil] = (value,fil.mtime)
except OSError as e:
if e.errno != 2:
raise
def hset(self, hashroot, key, value):
""" hashed set """
hroot = self.root / hashroot
if not hroot.isdir():
hroot.makedirs()
hfile = hroot / gethashfile(key)
d = self.get(hfile, {})
d.update( {key : value})
self[hfile] = d
def hget(self, hashroot, key, default = _sentinel, fast_only = True):
""" hashed get """
hroot = self.root / hashroot
hfile = hroot / gethashfile(key)
d = self.get(hfile, _sentinel )
#print "got dict",d,"from",hfile
if d is _sentinel:
if fast_only:
if default is _sentinel:
raise KeyError(key)
return default
# slow mode ok, works even after hcompress()
d = self.hdict(hashroot)
return d.get(key, default)
def hdict(self, hashroot):
""" Get all data contained in hashed category 'hashroot' as dict """
hfiles = self.keys(hashroot + "/*")
hfiles.sort()
last = len(hfiles) and hfiles[-1] or ''
if last.endswith('xx'):
# print "using xx"
hfiles = [last] + hfiles[:-1]
all = {}
for f in hfiles:
# print "using",f
try:
all.update(self[f])
except KeyError:
print "Corrupt",f,"deleted - hset is not threadsafe!"
del self[f]
self.uncache(f)
return all
def hcompress(self, hashroot):
""" Compress category 'hashroot', so hset is fast again
hget will fail if fast_only is True for compressed items (that were
hset before hcompress).
"""
hfiles = self.keys(hashroot + "/*")
all = {}
for f in hfiles:
# print "using",f
all.update(self[f])
self.uncache(f)
self[hashroot + '/xx'] = all
for f in hfiles:
p = self.root / f
if p.basename() == 'xx':
continue
p.remove()
def __delitem__(self,key):
""" del db["key"] """
fil = self.root / key
self.cache.pop(fil,None)
try:
fil.remove()
except OSError:
# notfound and permission denied are ok - we
# lost, the other process wins the conflict
pass
def _normalized(self, p):
""" Make a key suitable for user's eyes """
return str(self.root.relpathto(p)).replace('\\','/')
def keys(self, globpat = None):
""" All keys in DB, or all keys matching a glob"""
if globpat is None:
files = self.root.walkfiles()
else:
files = [Path(p) for p in glob.glob(self.root/globpat)]
return [self._normalized(p) for p in files if p.isfile()]
def __iter__(self):
return iter(self.keys())
def __len__(self):
return len(self.keys())
def uncache(self,*items):
""" Removes all, or specified items from cache
Use this after reading a large amount of large objects
to free up memory, when you won't be needing the objects
for a while.
"""
if not items:
self.cache = {}
for it in items:
self.cache.pop(it,None)
def waitget(self,key, maxwaittime = 60 ):
""" Wait (poll) for a key to get a value
Will wait for `maxwaittime` seconds before raising a KeyError.
The call exits normally if the `key` field in db gets a value
within the timeout period.
Use this for synchronizing different processes or for ensuring
that an unfortunately timed "db['key'] = newvalue" operation
in another process (which causes all 'get' operation to cause a
KeyError for the duration of pickling) won't screw up your program
logic.
"""
wtimes = [0.2] * 3 + [0.5] * 2 + [1]
tries = 0
waited = 0
while 1:
try:
val = self[key]
return val
except KeyError:
pass
if waited > maxwaittime:
raise KeyError(key)
time.sleep(wtimes[tries])
waited+=wtimes[tries]
if tries < len(wtimes) -1:
tries+=1
def getlink(self,folder):
""" Get a convenient link for accessing items """
return PickleShareLink(self, folder)
def __repr__(self):
return "PickleShareDB('%s')" % self.root
class PickleShareLink:
""" A shortdand for accessing nested PickleShare data conveniently.
Created through PickleShareDB.getlink(), example::
lnk = db.getlink('myobjects/test')
lnk.foo = 2
lnk.bar = lnk.foo + 5
"""
def __init__(self, db, keydir ):
self.__dict__.update(locals())
def __getattr__(self,key):
return self.__dict__['db'][self.__dict__['keydir']+'/' + key]
def __setattr__(self,key,val):
self.db[self.keydir+'/' + key] = val
def __repr__(self):
db = self.__dict__['db']
keys = db.keys( self.__dict__['keydir'] +"/*")
return "<PickleShareLink '%s': %s>" % (
self.__dict__['keydir'],
";".join([Path(k).basename() for k in keys]))
def test():
db = PickleShareDB('~/testpickleshare')
db.clear()
print "Should be empty:",db.items()
db['hello'] = 15
db['aku ankka'] = [1,2,313]
db['paths/nest/ok/keyname'] = [1,(5,46)]
db.hset('hash', 'aku', 12)
db.hset('hash', 'ankka', 313)
print "12 =",db.hget('hash','aku')
print "313 =",db.hget('hash','ankka')
print "all hashed",db.hdict('hash')
print db.keys()
print db.keys('paths/nest/ok/k*')
print dict(db) # snapsot of whole db
db.uncache() # frees memory, causes re-reads later
# shorthand for accessing deeply nested files
lnk = db.getlink('myobjects/test')
lnk.foo = 2
lnk.bar = lnk.foo + 5
print lnk.bar # 7
def stress():
db = PickleShareDB('~/fsdbtest')
import time,sys
for i in range(1000):
for j in range(1000):
if i % 15 == 0 and i < 200:
if str(j) in db:
del db[str(j)]
continue
if j%33 == 0:
time.sleep(0.02)
db[str(j)] = db.get(str(j), []) + [(i,j,"proc %d" % os.getpid())]
db.hset('hash',j, db.hget('hash',j,15) + 1 )
print i,
sys.stdout.flush()
if i % 10 == 0:
db.uncache()
def main():
import textwrap
usage = textwrap.dedent("""\
pickleshare - manage PickleShare databases
Usage:
pickleshare dump /path/to/db > dump.txt
pickleshare load /path/to/db < dump.txt
pickleshare test /path/to/db
""")
DB = PickleShareDB
import sys
if len(sys.argv) < 2:
print usage
return
cmd = sys.argv[1]
args = sys.argv[2:]
if cmd == 'dump':
if not args: args= ['.']
db = DB(args[0])
import pprint
pprint.pprint(db.items())
elif cmd == 'load':
cont = sys.stdin.read()
db = DB(args[0])
data = eval(cont)
db.clear()
for k,v in db.items():
db[k] = v
elif cmd == 'testwait':
db = DB(args[0])
db.clear()
print db.waitget('250')
elif cmd == 'test':
test()
stress()
if __name__== "__main__":
main()