##// END OF EJS Templates
update API after sagedays29...
update API after sagedays29 tests, docs updated to match * Client no longer has high-level methods (only in Views) * module functions can be pushed * clients can have a connection timeout * dependencies have separate switches for success/failure, not just success_only * add `with view.temp_flags(**flags):` for temporary flags Also updated some docs and examples

File last commit:

r3664:e90463ba
r3664:e90463ba
Show More
parallel_multiengine.txt
799 lines | 27.6 KiB | text/plain | TextLexer
/ docs / source / parallelz / parallel_multiengine.txt
.. _parallel_multiengine:
==========================
IPython's Direct interface
==========================
The direct, or multiengine, interface represents one possible way of working with a set of
IPython engines. The basic idea behind the multiengine interface is that the
capabilities of each engine are directly and explicitly exposed to the user.
Thus, in the multiengine interface, each engine is given an id that is used to
identify the engine and give it work to do. This interface is very intuitive
and is designed with interactive usage in mind, and is the best place for
new users of IPython to begin.
Starting the IPython controller and engines
===========================================
To follow along with this tutorial, you will need to start the IPython
controller and four IPython engines. The simplest way of doing this is to use
the :command:`ipclusterz` command::
$ ipclusterz start -n 4
For more detailed information about starting the controller and engines, see
our :ref:`introduction <ip1par>` to using IPython for parallel computing.
Creating a ``Client`` instance
==============================
The first step is to import the IPython :mod:`IPython.zmq.parallel.client`
module and then create a :class:`.Client` instance:
.. sourcecode:: ipython
In [1]: from IPython.zmq.parallel import client
In [2]: rc = client.Client()
This form assumes that the default connection information (stored in
:file:`ipcontroller-client.json` found in :file:`IPYTHON_DIR/clusterz_default/security`) is
accurate. If the controller was started on a remote machine, you must copy that connection
file to the client machine, or enter its contents as arguments to the Client constructor:
.. sourcecode:: ipython
# If you have copied the json connector file from the controller:
In [2]: rc = client.Client('/path/to/ipcontroller-client.json')
# or to connect with a specific profile you have set up:
In [3]: rc = client.Client(profile='mpi')
To make sure there are engines connected to the controller, users can get a list
of engine ids:
.. sourcecode:: ipython
In [3]: rc.ids
Out[3]: [0, 1, 2, 3]
Here we see that there are four engines ready to do work for us.
For direct execution, we will make use of a :class:`DirectView` object, which can be
constructed via list-access to the client:
.. sourcecode:: ipython
In [4]: dview = rc[:] # use all engines
.. seealso::
For more information, see the in-depth explanation of :ref:`Views <parallel_details>`.
Quick and easy parallelism
==========================
In many cases, you simply want to apply a Python function to a sequence of
objects, but *in parallel*. The client interface provides a simple way
of accomplishing this: using the DirectView's :meth:`~DirectView.map` method.
Parallel map
------------
Python's builtin :func:`map` functions allows a function to be applied to a
sequence element-by-element. This type of code is typically trivial to
parallelize. In fact, since IPython's interface is all about functions anyway,
you can just use the builtin :func:`map` with a :class:`RemoteFunction`, or a
DirectView's :meth:`map` method:
.. sourcecode:: ipython
In [62]: serial_result = map(lambda x:x**10, range(32))
In [63]: parallel_result = dview.map_sync(lambda x: x**10, range(32))
In [67]: serial_result==parallel_result
Out[67]: True
.. note::
The :class:`DirectView`'s version of :meth:`map` does
not do dynamic load balancing. For a load balanced version, use a
:class:`LoadBalancedView`.
.. seealso::
:meth:`map` is implemented via :class:`ParallelFunction`.
Remote function decorators
--------------------------
Remote functions are just like normal functions, but when they are called,
they execute on one or more engines, rather than locally. IPython provides
two decorators:
.. sourcecode:: ipython
In [10]: @dview.remote(block=True)
...: def getpid():
...: import os
...: return os.getpid()
...:
In [11]: getpid()
Out[11]: [12345, 12346, 12347, 12348]
The ``@parallel`` decorator creates parallel functions, that break up an element-wise
operations and distribute them, reconstructing the result.
.. sourcecode:: ipython
In [12]: import numpy as np
In [13]: A = np.random.random((64,48))
In [14]: @dview.parallel(block=True)
...: def pmul(A,B):
...: return A*B
In [15]: C_local = A*A
In [16]: C_remote = pmul(A,A)
In [17]: (C_local == C_remote).all()
Out[17]: True
.. seealso::
See the docstrings for the :func:`parallel` and :func:`remote` decorators for
options.
Calling Python functions
========================
The most basic type of operation that can be performed on the engines is to
execute Python code or call Python functions. Executing Python code can be
done in blocking or non-blocking mode (non-blocking is default) using the
:meth:`.View.execute` method, and calling functions can be done via the
:meth:`.View.apply` method.
apply
-----
The main method for doing remote execution (in fact, all methods that
communicate with the engines are built on top of it), is :meth:`View.apply`.
We strive to provide the cleanest interface we can, so `apply` has the following
signature:
.. sourcecode:: python
view.apply(f, *args, **kwargs)
There are various ways to call functions with IPython, and these flags are set as
attributes of the View. The ``DirectView`` has just two of these flags:
dv.block : bool
whether to wait for the result, or return an :class:`AsyncResult` object
immediately
dv.track : bool
whether to instruct pyzmq to track when
This is primarily useful for non-copying sends of numpy arrays that you plan to
edit in-place. You need to know when it becomes safe to edit the buffer
without corrupting the message.
Creating a view is simple: index-access on a client creates a :class:`.DirectView`.
.. sourcecode:: ipython
In [4]: view = rc[1:3]
Out[4]: <DirectView [1, 2]>
In [5]: view.apply<tab>
view.apply view.apply_async view.apply_sync view.apply_with_flags
For convenience, you can set block temporarily for a single call with the extra sync/async methods.
Blocking execution
------------------
In blocking mode, the :class:`.DirectView` object (called ``dview`` in
these examples) submits the command to the controller, which places the
command in the engines' queues for execution. The :meth:`apply` call then
blocks until the engines are done executing the command:
.. sourcecode:: ipython
In [2]: dview = rc[:] # A DirectView of all engines
In [3]: dview.block=True
In [4]: dview['a'] = 5
In [5]: dview['b'] = 10
In [6]: dview.apply(lambda x: a+b+x, 27)
Out[6]: [42, 42, 42, 42]
You can also select blocking execution on a call-by-call basis with the :meth:`apply_sync`
method:
In [7]: dview.block=False
In [8]: dview.apply_sync(lambda x: a+b+x, 27)
Out[8]: [42, 42, 42, 42]
Python commands can be executed as strings on specific engines by using a View's ``execute``
method:
.. sourcecode:: ipython
In [6]: rc[::2].execute('c=a+b')
In [7]: rc[1::2].execute('c=a-b')
In [8]: rc[:]['c'] # shorthand for rc[:].pull('c', block=True)
Out[8]: [15, -5, 15, -5]
Non-blocking execution
----------------------
In non-blocking mode, :meth:`apply` submits the command to be executed and
then returns a :class:`AsyncResult` object immediately. The
:class:`AsyncResult` object gives you a way of getting a result at a later
time through its :meth:`get` method.
.. Note::
The :class:`AsyncResult` object provides a superset of the interface in
:py:class:`multiprocessing.pool.AsyncResult`. See the
`official Python documentation <http://docs.python.org/library/multiprocessing#multiprocessing.pool.AsyncResult>`_
for more.
This allows you to quickly submit long running commands without blocking your
local Python/IPython session:
.. sourcecode:: ipython
# define our function
In [6]: def wait(t):
...: import time
...: tic = time.time()
...: time.sleep(t)
...: return time.time()-tic
# In non-blocking mode
In [7]: ar = dview.apply_async(wait, 2)
# Now block for the result
In [8]: ar.get()
Out[8]: [2.0006198883056641, 1.9997570514678955, 1.9996809959411621, 2.0003249645233154]
# Again in non-blocking mode
In [9]: ar = dview.apply_async(wait, 10)
# Poll to see if the result is ready
In [10]: ar.ready()
Out[10]: False
# ask for the result, but wait a maximum of 1 second:
In [45]: ar.get(1)
---------------------------------------------------------------------------
TimeoutError Traceback (most recent call last)
/home/you/<ipython-input-45-7cd858bbb8e0> in <module>()
----> 1 ar.get(1)
/path/to/site-packages/IPython/zmq/parallel/asyncresult.pyc in get(self, timeout)
62 raise self._exception
63 else:
---> 64 raise error.TimeoutError("Result not ready.")
65
66 def ready(self):
TimeoutError: Result not ready.
.. Note::
Note the import inside the function. This is a common model, to ensure
that the appropriate modules are imported where the task is run. You can
also manually import modules into the engine(s) namespace(s) via
:meth:`view.execute('import numpy')`.
Often, it is desirable to wait until a set of :class:`AsyncResult` objects
are done. For this, there is a the method :meth:`wait`. This method takes a
tuple of :class:`AsyncResult` objects (or `msg_ids` or indices to the client's History),
and blocks until all of the associated results are ready:
.. sourcecode:: ipython
In [72]: dview.block=False
# A trivial list of AsyncResults objects
In [73]: pr_list = [dview.apply_async(wait, 3) for i in range(10)]
# Wait until all of them are done
In [74]: dview.wait(pr_list)
# Then, their results are ready using get() or the `.r` attribute
In [75]: pr_list[0].get()
Out[75]: [2.9982571601867676, 2.9982588291168213, 2.9987530708312988, 2.9990990161895752]
The ``block`` attribute
-----------------------
Many View methods(excluding :meth:`apply`) accept
``block`` as a keyword argument. As we have seen above, these
keyword arguments control the blocking mode. The :class:`View` class also has
a :attr:`block` attribute that controls the default behavior when the keyword
argument is not provided. Thus the following logic is used for :attr:`block`:
* If no keyword argument is provided, the instance attributes are used.
* Keyword argument, if provided override the instance attributes for
the duration of a single call.
The following examples demonstrate how to use the instance attributes:
.. sourcecode:: ipython
In [17]: dview.block = False
In [18]: ar = dview.apply(lambda : 10)
In [19]: ar.get()
Out[19]: [10, 10, 10, 10]
In [21]: dview.block = True
# Note targets='all' means all engines
In [22]: dview.apply(lambda : 42)
Out[22]: [42, 42, 42, 42]
The :attr:`block` and :attr:`targets` instance attributes of the
:class:`.DirectView` also determine the behavior of the parallel magic commands.
Parallel magic commands
-----------------------
.. warning::
The magics have not been changed to work with the zeromq system. The
magics do work, but *do not* print stdin/out like they used to in IPython.kernel.
We provide a few IPython magic commands (``%px``, ``%autopx`` and ``%result``)
that make it more pleasant to execute Python commands on the engines
interactively. These are simply shortcuts to :meth:`execute` and
:meth:`get_result` of the :class:`DirectView`. The ``%px`` magic executes a single
Python command on the engines specified by the :attr:`targets` attribute of the
:class:`DirectView` instance:
.. sourcecode:: ipython
# load the parallel magic extension:
In [21]: %load_ext parallelmagic
# Create a DirectView for all targets
In [22]: dv = rc[:]
# Make this DirectView active for parallel magic commands
In [23]: dv.activate()
In [24]: dv.block=True
In [25]: import numpy
In [26]: %px import numpy
Parallel execution on engines: [0, 1, 2, 3]
In [27]: %px a = numpy.random.rand(2,2)
Parallel execution on engines: [0, 1, 2, 3]
In [28]: %px ev = numpy.linalg.eigvals(a)
Parallel execution on engines: [0, 1, 2, 3]
In [28]: dv['ev']
Out[28]: [ array([ 1.09522024, -0.09645227]),
array([ 1.21435496, -0.35546712]),
array([ 0.72180653, 0.07133042]),
array([ 1.46384341e+00, 1.04353244e-04])
]
The ``%result`` magic gets the most recent result, or takes an argument
specifying the index of the result to be requested. It is simply a shortcut to the
:meth:`get_result` method:
.. sourcecode:: ipython
In [29]: dv.apply_async(lambda : ev)
In [30]: %result
Out[30]: [ [ 1.28167017 0.14197338],
[-0.14093616 1.27877273],
[-0.37023573 1.06779409],
[ 0.83664764 -0.25602658] ]
The ``%autopx`` magic switches to a mode where everything you type is executed
on the engines given by the :attr:`targets` attribute:
.. sourcecode:: ipython
In [30]: dv.block=False
In [31]: %autopx
Auto Parallel Enabled
Type %autopx to disable
In [32]: max_evals = []
<IPython.zmq.parallel.asyncresult.AsyncResult object at 0x17b8a70>
In [33]: for i in range(100):
....: a = numpy.random.rand(10,10)
....: a = a+a.transpose()
....: evals = numpy.linalg.eigvals(a)
....: max_evals.append(evals[0].real)
....:
....:
<IPython.zmq.parallel.asyncresult.AsyncResult object at 0x17af8f0>
In [34]: %autopx
Auto Parallel Disabled
In [35]: dv.block=True
In [36]: px ans= "Average max eigenvalue is: %f"%(sum(max_evals)/len(max_evals))
Parallel execution on engines: [0, 1, 2, 3]
In [37]: dv['ans']
Out[37]: [ 'Average max eigenvalue is: 10.1387247332',
'Average max eigenvalue is: 10.2076902286',
'Average max eigenvalue is: 10.1891484655',
'Average max eigenvalue is: 10.1158837784',]
Moving Python objects around
============================
In addition to calling functions and executing code on engines, you can
transfer Python objects to and from your IPython session and the engines. In
IPython, these operations are called :meth:`push` (sending an object to the
engines) and :meth:`pull` (getting an object from the engines).
Basic push and pull
-------------------
Here are some examples of how you use :meth:`push` and :meth:`pull`:
.. sourcecode:: ipython
In [38]: dview.push(dict(a=1.03234,b=3453))
Out[38]: [None,None,None,None]
In [39]: dview.pull('a')
Out[39]: [ 1.03234, 1.03234, 1.03234, 1.03234]
In [40]: rc[0].pull('b')
Out[40]: 3453
In [41]: dview.pull(('a','b'))
Out[41]: [ [1.03234, 3453], [1.03234, 3453], [1.03234, 3453], [1.03234, 3453] ]
In [43]: dview.push(dict(c='speed'))
Out[43]: [None,None,None,None]
In non-blocking mode :meth:`push` and :meth:`pull` also return
:class:`AsyncResult` objects:
.. sourcecode:: ipython
In [48]: ar = dview.pull('a', block=False)
In [49]: ar.get()
Out[49]: [1.03234, 1.03234, 1.03234, 1.03234]
Dictionary interface
--------------------
Since a Python namespace is just a :class:`dict`, :class:`DirectView` objects provide
dictionary-style access by key and methods such as :meth:`get` and
:meth:`update` for convenience. This make the remote namespaces of the engines
appear as a local dictionary. Underneath, these methods call :meth:`apply`:
.. sourcecode:: ipython
In [51]: dview['a']=['foo','bar']
In [52]: dview['a']
Out[52]: [ ['foo', 'bar'], ['foo', 'bar'], ['foo', 'bar'], ['foo', 'bar'] ]
Scatter and gather
------------------
Sometimes it is useful to partition a sequence and push the partitions to
different engines. In MPI language, this is know as scatter/gather and we
follow that terminology. However, it is important to remember that in
IPython's :class:`Client` class, :meth:`scatter` is from the
interactive IPython session to the engines and :meth:`gather` is from the
engines back to the interactive IPython session. For scatter/gather operations
between engines, MPI should be used:
.. sourcecode:: ipython
In [58]: dview.scatter('a',range(16))
Out[58]: [None,None,None,None]
In [59]: dview['a']
Out[59]: [ [0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15] ]
In [60]: dview.gather('a')
Out[60]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
Other things to look at
=======================
How to do parallel list comprehensions
--------------------------------------
In many cases list comprehensions are nicer than using the map function. While
we don't have fully parallel list comprehensions, it is simple to get the
basic effect using :meth:`scatter` and :meth:`gather`:
.. sourcecode:: ipython
In [66]: dview.scatter('x',range(64))
In [67]: %px y = [i**10 for i in x]
Parallel execution on engines: [0, 1, 2, 3]
Out[67]:
In [68]: y = dview.gather('y')
In [69]: print y
[0, 1, 1024, 59049, 1048576, 9765625, 60466176, 282475249, 1073741824,...]
Parallel exceptions
-------------------
In the multiengine interface, parallel commands can raise Python exceptions,
just like serial commands. But, it is a little subtle, because a single
parallel command can actually raise multiple exceptions (one for each engine
the command was run on). To express this idea, we have a
:exc:`CompositeError` exception class that will be raised in most cases. The
:exc:`CompositeError` class is a special type of exception that wraps one or
more other types of exceptions. Here is how it works:
.. sourcecode:: ipython
In [76]: dview.block=True
In [77]: dview.execute('1/0')
---------------------------------------------------------------------------
CompositeError Traceback (most recent call last)
/home/you/<ipython-input-10-15c2c22dec39> in <module>()
----> 1 dview.execute('1/0', block=True)
/path/to/site-packages/IPython/zmq/parallel/view.py in execute(self, code, block)
460 default: self.block
461 """
--> 462 return self.apply_with_flags(util._execute, args=(code,), block=block)
463
464 def run(self, filename, block=None):
/home/you/<string> in apply_with_flags(self, f, args, kwargs, block, track)
/path/to/site-packages/IPython/zmq/parallel/view.py in sync_results(f, self, *args, **kwargs)
46 def sync_results(f, self, *args, **kwargs):
47 """sync relevant results from self.client to our results attribute."""
---> 48 ret = f(self, *args, **kwargs)
49 delta = self.outstanding.difference(self.client.outstanding)
50 completed = self.outstanding.intersection(delta)
/home/you/<string> in apply_with_flags(self, f, args, kwargs, block, track)
/path/to/site-packages/IPython/zmq/parallel/view.py in save_ids(f, self, *args, **kwargs)
35 n_previous = len(self.client.history)
36 try:
---> 37 ret = f(self, *args, **kwargs)
38 finally:
39 nmsgs = len(self.client.history) - n_previous
/path/to/site-packages/IPython/zmq/parallel/view.py in apply_with_flags(self, f, args, kwargs, block, track)
398 if block:
399 try:
--> 400 return ar.get()
401 except KeyboardInterrupt:
402 pass
/path/to/site-packages/IPython/zmq/parallel/asyncresult.pyc in get(self, timeout)
87 return self._result
88 else:
---> 89 raise self._exception
90 else:
91 raise error.TimeoutError("Result not ready.")
CompositeError: one or more exceptions from call to method: _execute
[0:apply]: ZeroDivisionError: integer division or modulo by zero
[1:apply]: ZeroDivisionError: integer division or modulo by zero
[2:apply]: ZeroDivisionError: integer division or modulo by zero
[3:apply]: ZeroDivisionError: integer division or modulo by zero
Notice how the error message printed when :exc:`CompositeError` is raised has
information about the individual exceptions that were raised on each engine.
If you want, you can even raise one of these original exceptions:
.. sourcecode:: ipython
In [80]: try:
....: dview.execute('1/0')
....: except client.CompositeError, e:
....: e.raise_exception()
....:
....:
---------------------------------------------------------------------------
ZeroDivisionError Traceback (most recent call last)
/ipython1-client-r3021/docs/examples/<ipython console> in <module>()
/ipython1-client-r3021/ipython1/kernel/error.pyc in raise_exception(self, excid)
156 raise IndexError("an exception with index %i does not exist"%excid)
157 else:
--> 158 raise et, ev, etb
159
160 def collect_exceptions(rlist, method):
ZeroDivisionError: integer division or modulo by zero
If you are working in IPython, you can simple type ``%debug`` after one of
these :exc:`CompositeError` exceptions is raised, and inspect the exception
instance:
.. sourcecode:: ipython
In [81]: dview.execute('1/0')
---------------------------------------------------------------------------
CompositeError Traceback (most recent call last)
/home/you/<ipython-input-10-15c2c22dec39> in <module>()
----> 1 dview.execute('1/0', block=True)
/path/to/site-packages/IPython/zmq/parallel/view.py in execute(self, code, block)
460 default: self.block
461 """
--> 462 return self.apply_with_flags(util._execute, args=(code,), block=block)
463
464 def run(self, filename, block=None):
/home/you/<string> in apply_with_flags(self, f, args, kwargs, block, track)
/path/to/site-packages/IPython/zmq/parallel/view.py in sync_results(f, self, *args, **kwargs)
46 def sync_results(f, self, *args, **kwargs):
47 """sync relevant results from self.client to our results attribute."""
---> 48 ret = f(self, *args, **kwargs)
49 delta = self.outstanding.difference(self.client.outstanding)
50 completed = self.outstanding.intersection(delta)
/home/you/<string> in apply_with_flags(self, f, args, kwargs, block, track)
/path/to/site-packages/IPython/zmq/parallel/view.py in save_ids(f, self, *args, **kwargs)
35 n_previous = len(self.client.history)
36 try:
---> 37 ret = f(self, *args, **kwargs)
38 finally:
39 nmsgs = len(self.client.history) - n_previous
/path/to/site-packages/IPython/zmq/parallel/view.py in apply_with_flags(self, f, args, kwargs, block, track)
398 if block:
399 try:
--> 400 return ar.get()
401 except KeyboardInterrupt:
402 pass
/path/to/site-packages/IPython/zmq/parallel/asyncresult.pyc in get(self, timeout)
87 return self._result
88 else:
---> 89 raise self._exception
90 else:
91 raise error.TimeoutError("Result not ready.")
CompositeError: one or more exceptions from call to method: _execute
[0:apply]: ZeroDivisionError: integer division or modulo by zero
[1:apply]: ZeroDivisionError: integer division or modulo by zero
[2:apply]: ZeroDivisionError: integer division or modulo by zero
[3:apply]: ZeroDivisionError: integer division or modulo by zero
In [82]: %debug
> /Users/minrk/dev/ip/mine/IPython/zmq/parallel/asyncresult.py(80)get()
79 else:
---> 80 raise self._exception
81 else:
# With the debugger running, e is the exceptions instance. We can tab complete
# on it and see the extra methods that are available.
ipdb> e.
e.__class__ e.__getitem__ e.__new__ e.__setstate__ e.args
e.__delattr__ e.__getslice__ e.__reduce__ e.__str__ e.elist
e.__dict__ e.__hash__ e.__reduce_ex__ e.__weakref__ e.message
e.__doc__ e.__init__ e.__repr__ e._get_engine_str e.print_tracebacks
e.__getattribute__ e.__module__ e.__setattr__ e._get_traceback e.raise_exception
ipdb> e.print_tracebacks()
[0:apply]:
Traceback (most recent call last):
File "/Users/minrk/dev/ip/mine/IPython/zmq/parallel/streamkernel.py", line 332, in apply_request
exec code in working, working
File "<string>", line 1, in <module>
File "/Users/minrk/dev/ip/mine/IPython/zmq/parallel/client.py", line 69, in _execute
exec code in globals()
File "<string>", line 1, in <module>
ZeroDivisionError: integer division or modulo by zero
[1:apply]:
Traceback (most recent call last):
File "/Users/minrk/dev/ip/mine/IPython/zmq/parallel/streamkernel.py", line 332, in apply_request
exec code in working, working
File "<string>", line 1, in <module>
File "/Users/minrk/dev/ip/mine/IPython/zmq/parallel/client.py", line 69, in _execute
exec code in globals()
File "<string>", line 1, in <module>
ZeroDivisionError: integer division or modulo by zero
[2:apply]:
Traceback (most recent call last):
File "/Users/minrk/dev/ip/mine/IPython/zmq/parallel/streamkernel.py", line 332, in apply_request
exec code in working, working
File "<string>", line 1, in <module>
File "/Users/minrk/dev/ip/mine/IPython/zmq/parallel/client.py", line 69, in _execute
exec code in globals()
File "<string>", line 1, in <module>
ZeroDivisionError: integer division or modulo by zero
[3:apply]:
Traceback (most recent call last):
File "/Users/minrk/dev/ip/mine/IPython/zmq/parallel/streamkernel.py", line 332, in apply_request
exec code in working, working
File "<string>", line 1, in <module>
File "/Users/minrk/dev/ip/mine/IPython/zmq/parallel/client.py", line 69, in _execute
exec code in globals()
File "<string>", line 1, in <module>
ZeroDivisionError: integer division or modulo by zero
.. note::
TODO: The above tracebacks are not up to date
All of this same error handling magic even works in non-blocking mode:
.. sourcecode:: ipython
In [83]: dview.block=False
In [84]: ar = dview.execute('1/0')
In [85]: ar.get()
---------------------------------------------------------------------------
CompositeError Traceback (most recent call last)
/Users/minrk/<ipython-input-3-8531eb3d26fb> in <module>()
----> 1 ar.get()
/Users/minrk/dev/ip/mine/IPython/zmq/parallel/asyncresult.pyc in get(self, timeout)
78 return self._result
79 else:
---> 80 raise self._exception
81 else:
82 raise error.TimeoutError("Result not ready.")
CompositeError: one or more exceptions from call to method: _execute
[0:apply]: ZeroDivisionError: integer division or modulo by zero
[1:apply]: ZeroDivisionError: integer division or modulo by zero
[2:apply]: ZeroDivisionError: integer division or modulo by zero
[3:apply]: ZeroDivisionError: integer division or modulo by zero