##// END OF EJS Templates
Merge branch 'takluyver-magic-local-scope'
Merge branch 'takluyver-magic-local-scope'

File last commit:

r2267:928c921b
r3480:effd1e1d merge
Show More
ipy_constants.py
669 lines | 18.4 KiB | text/x-python | PythonLexer
""" Module with physical constants for use with ipython, profile
"physics".
Definition of Fundamental Physical Constants, CODATA Recommended Values
Source, Peter J. Mohr and Barry N. Taylor,
CODATA Recommended Values of the Fundamental
Physical Constants, 1998
Website: physics.nist.gov/constants
"""
# License: BSD-like
# Copyright: Gael Varoquaux (gael.varoquaux@normalesup.org)
# inspired by maxima's physconst.mac by Cliff Yapp
#from math import * # math MUST be imported BEFORE PhysicalQInteractive
from IPython.extensions.PhysicalQInteractive import PhysicalQuantityInteractive
# Math constants:
# Pi mathematical constants
pi = 3.141592653589793238462643383279502884197169399375105820974944592
# Universal Constants
#-------------------------------------------------------------------------
c = PhysicalQuantityInteractive(299792458 , 'm/s')
c.__doc__ = """speed of light in vacuum"""
c.__doc__ = "speed of light in vacuum"
u_0 = PhysicalQuantityInteractive(4*pi*1E-7 , 'N/(A**2)')
u_0.__doc__ = """magnetic constant"""
mu_0 = PhysicalQuantityInteractive(4*pi*1E-7 , 'N/(A**2)')
epsilon_0 = PhysicalQuantityInteractive(8.854187817E-12 , 'F/m')
epsilon_0.__doc__ = """electric constant """
Z_0 = PhysicalQuantityInteractive(376.730313461 , 'ohm')
Z_0.__doc__ = """characteristic impedance of vacuum """
G = PhysicalQuantityInteractive(6.673E-11 , 'm**3/(kg*s**2)')
G.__doc__ = """Newtonian constant of gravitation """
h = PhysicalQuantityInteractive(6.62606876E-34 , 'J*s')
h.__doc__ = """Planck constant """
h_eV = PhysicalQuantityInteractive(4.13566727E-15 , 'eV*s')
h_eV.__doc__ = """Planck constant in eVs """
h_bar = PhysicalQuantityInteractive(1.054571596E-34 , 'J*s')
h_bar.__doc__ = """Hbar"""
h_bar_eV = PhysicalQuantityInteractive(6.58211889E-16 , 'eV*s')
h_bar_eV.__doc__ = """Hbar in eV"""
P_m = PhysicalQuantityInteractive(2.1767E-8 , 'kg')
P_m.__doc__ = """Planck mass"""
P_l = PhysicalQuantityInteractive(1.6160E-35 , 'm')
P_l.__doc__ = """Planck length """
P_t = PhysicalQuantityInteractive(5.3906E-44 , 's')
P_t.__doc__ = """Planck time """
# Electromagnetic Constants
#------------------------------------------------------------------------
_e = PhysicalQuantityInteractive(1.602176462E-19 , 'C')
_e.__doc__ = """elementary charge"""
q = _e
capitalphi_0 = PhysicalQuantityInteractive(2.067833636E-15 , 'Wb')
capitalphi_0.__doc__ = """magnetic flux quantum """
mfq_0 = PhysicalQuantityInteractive(2.067833636E-15 , 'Wb')
G_0 = PhysicalQuantityInteractive(7.748091696E-5 , 'S')
G_0.__doc__ = """conductance quantum """
K_J = PhysicalQuantityInteractive(483597.898E9 , 'Hz/V')
K_J.__doc__ = """Josephson constant"""
R_K = PhysicalQuantityInteractive(25812.807572 , 'ohm')
R_K.__doc__ = """von Klitzing constant"""
u_B = PhysicalQuantityInteractive(927.400899E-26 , 'J/T')
u_B.__doc__ = """Bohr magneton"""
ueVT_B = PhysicalQuantityInteractive(5.788381749E-5 , 'eV/T')
ueVT_B.__doc__ = """Bohr magneton in eV T-1"""
u_N = PhysicalQuantityInteractive(5.05078317E-27 , 'J/T')
u_N.__doc__ = """nuclear magneton """
ueVT_N = PhysicalQuantityInteractive(3.152451238E-8 , 'eV/T')
ueVT_N.__doc__ = """nuclear magneton in eV T-1 """
# Atomic and Nuclear Constants
# General
#-------------------------------------------------------------------------
# fine-structure constant
alpha = 7.297352533E-3
Ry = PhysicalQuantityInteractive(10973731.568549 , '1/m')
Ry.__doc__ = """Rydberg constant """
Ry_INF = PhysicalQuantityInteractive(10973731.568549 , '1/m')
a_0 = PhysicalQuantityInteractive(0.5291772083E-10 , 'm')
a_0.__doc__ = """Bohr radius """
E_h = PhysicalQuantityInteractive(4.35974381E-18 , 'J')
E_h.__doc__ = """Hartree energy """
Eev_h = PhysicalQuantityInteractive(27.2113834 , 'eV')
Eev_h.__doc__ = """Hartree energy in eV """
qcir2 = PhysicalQuantityInteractive(3.636947516E-4 , 'm**2/s')
qcir2.__doc__ = """quantum of circulation h/(2me) """
qcir = PhysicalQuantityInteractive(7.273895032E-4 , 'm**2/s')
qcir.__doc__ = """quantum of circulation h/(me) """
# Electroweak
#-------------------------------------------------------------------------
Fcc = PhysicalQuantityInteractive(1.16639E-5 , '1/GeV**2')
Fcc.__doc__ = """Fermi coupling constant """
# weak mixing angled W (on-shell scheme)
wma_W = 0.2224
# Electron, e-
#-------------------------------------------------------------------------
m_e = PhysicalQuantityInteractive(9.10938188E-31 , 'kg')
m_e.__doc__ = """electron mass """
m_e_u = PhysicalQuantityInteractive(5.485799110E-4 , 'amu')
m_e_u.__doc__ = """electron mass (electron relative atomic mass times amu)"""
me_J = PhysicalQuantityInteractive(8.18710414E-14 , 'J')
me_J.__doc__ = """electron mass - energy equivalent """
me_MeV = PhysicalQuantityInteractive(0.510998902 , 'MeV')
me_MeV.__doc__ = """electron mass - energy equivalent in MeV"""
# electron-muon mass ratio
memu = 4.83633210E-3
# electron-tau mass ratio
metau = 2.87555E-4
# electron-proton mass ratio
memp = 5.446170232E-4
# electron-neutron mass ratio
memn = 5.438673462E-4
# electron-deuteron mass ratio
memd = 2.7244371170E-4
# electron to alpha particle mass ratio
memalpha = 1.3709335611E-4
echargeemass = PhysicalQuantityInteractive(-1.758820174E11 , 'C/kg')
echargeemass.__doc__ = """electron charge to mass quotient """
Molar_e = PhysicalQuantityInteractive(5.485799110E-7 , 'kg/mol')
Molar_e.__doc__ = """electron molar mass """
lambdaC = PhysicalQuantityInteractive(2.426310215E-12 , 'm')
lambdaC.__doc__ = """Compton wavelength """
r_e = PhysicalQuantityInteractive(2.817940285E-15 , 'm')
r_e.__doc__ = """classical electron radius """
sigma_e = PhysicalQuantityInteractive(0.665245854E-28 , 'm**2')
sigma_e.__doc__ = """Thomson cross section """
u_e = PhysicalQuantityInteractive(-928.476362E-26 , 'J/T')
u_e.__doc__ = """electron magnetic moment """
# electron magnetic moment to Bohr magneton ratio
ueuB = -1.0011596521869
# electron magnetic moment to nuclear magneton ratio
ueuN = -1838.2819660
# electron magnetic moment anomaly |ue|/uB - 1
a_e = 1.1596521869E-3
# electron g-factor
g_e = -2.0023193043737
# electron-muon magnetic moment ratio
ueuu = 206.7669720
# electron-proton magnetic moment ratio
ueup = -658.2106875
# electron to shielded proton magnetic moment ratio (H2O, sphere, 25 C)
ueusp = -658.2275954
# electron-neutron magnetic moment ratio
ueun = 960.92050
# electron-deuteron magnetic moment ratio
ueud = -2143.923498
# electron to shielded helione magnetic moment ratio (gas, sphere, 25 C)
ueush = 864.058255
gamma_e = PhysicalQuantityInteractive(1.760859794E11 , '1/(s*T)')
gamma_e.__doc__ = """electron gyromagnetic ratio """
# Muon, u-
#-------------------------------------------------------------------------
m_u = PhysicalQuantityInteractive(1.88353109E-28 , 'kg')
m_u.__doc__ = """muon mass """
mu_u = PhysicalQuantityInteractive(0.1134289168 , 'amu')
mu_u.__doc__ = """muon mass in muon relative atomic mass times amu """
muc2_J = PhysicalQuantityInteractive(1.69283332E-11 , 'J')
muc2_J.__doc__ = """energy equivalent """
muc2_MeV = PhysicalQuantityInteractive(105.6583568 , 'MeV')
muc2_MeV.__doc__ = """energy equivalent in MeV """
# muon-electron mass ratio
mume = 206.7682657
# muon-tau mass ratio
mum = 5.94572E-2
# muon-proton mass ratio
mump = 0.1126095173
# muon-neutron mass ratio
mumn = 0.1124545079
Molar_u = PhysicalQuantityInteractive(0.1134289168E-3 , 'kg/mol')
Molar_u.__doc__ = """muon molar mass """
lambda_C_u = PhysicalQuantityInteractive(11.73444197E-15 , 'm')
lambda_C_u.__doc__ = """muon Compton wavelength """
uu = PhysicalQuantityInteractive(-4.49044813E-26 , 'J/T')
uu.__doc__ = """muon magnetic moment """
# ratio of muon magnetic moment to Bohr magneton ratio
uuuB = -4.84197085E-3
# ratio of muon magnetic moment to nuclear magneton ratio
uuuN = -8.89059770
# muon magnetic moment anomaly |uu|/(e /2mu) - 1
a_u = 1.16591602E-3
# muon g-factor -2(1 + au)
g_u = -2.0023318320
# muon-proton magnetic moment ratio
uuup = -3.18334539
# Tau, tau-
#-------------------------------------------------------------------------
m_tau = PhysicalQuantityInteractive(3.16788E-27 , 'kg')
m_tau.__doc__ = """tau mass """
mu_tau = PhysicalQuantityInteractive(1.90774 , 'amu')
mu_tau.__doc__ = """tau mass (tau relative atomic mass times amu) """
mtauc2_J = PhysicalQuantityInteractive(2.84715E-10 , 'J')
mtauc2_J.__doc__ = """tau mass energy equivalent """
mtauc2_MeV = PhysicalQuantityInteractive(1777.05 , 'MeV')
mtauc2_MeV.__doc__ = """tau mass energy equivalent in MeV """
# tau-electron mass ratio
mtaume = 3477.60
# tau-muon mass ratio
mtaumu = 16.8188
# tau-proton mass ratio
mtaump = 1.89396
# tau-neutron mass ratio
mtaumn = 1.89135
Molar_tau = PhysicalQuantityInteractive(1.90774E-3 , 'kg/mol')
Molar_tau.__doc__ = """tau molar mass """
lambda_C_tau = PhysicalQuantityInteractive(0.69770E-15 , 'm')
lambda_C_tau.__doc__ = """tau Compton wavelength """
# Proton, p
#-------------------------------------------------------------------------
m_p = PhysicalQuantityInteractive(1.67262158E-27 , 'kg')
m_p.__doc__ = """proton mass """
mu_p = PhysicalQuantityInteractive(1.00727646688 , 'amu')
mu_p.__doc__ = """proton mass (proton relative atomic mass times amu) """
mpc2_J = PhysicalQuantityInteractive(1.50327731E-10 , 'J')
mpc2_J.__doc__ = """energy equivalent """
mpc2_MeV = PhysicalQuantityInteractive(938.271998 , 'MeV')
mpc2_MeV.__doc__ = """energy equivalent in MeV """
# proton-electron mass ratio
mpme = 1836.1526675
# proton-muon mass ratio
mpmu = 8.88024408
# proton-tau mass ratio
mpmtau = 0.527994
# proton-neutron mass ratio
mpmn = 0.99862347855
emp = PhysicalQuantityInteractive(9.57883408E7 , 'C/kg')
emp.__doc__ = """proton charge to mass quotient """
Molar_p = PhysicalQuantityInteractive(1.00727646688E-3 , 'kg/mol')
Molar_p.__doc__ = """proton molar mass """
lambda_C_p = PhysicalQuantityInteractive(1.321409847E-15 , 'm')
lambda_C_p.__doc__ = """proton Compton wavelength h/mpc """
up = PhysicalQuantityInteractive(1.410606633E-26 , 'J/T')
up.__doc__ = """proton magnetic moment """
# proton magnetic moment to Bohr magneton ratio
upuB = 1.521032203E-3
# proton magnetic moment to nuclear magneton ratio
upuN = 2.792847337
# proton g-factor 2up/uN
g_p = 5.585694675
# proton-neutron magnetic moment ratio
upun = -1.45989805
usp = PhysicalQuantityInteractive(1.410570399E-26 , 'J/T')
usp.__doc__ = """shielded proton magnetic moment (H2O, sphere, 25 C)"""
# shielded proton magnetic moment to Bohr magneton ratio
uspuB = 1.520993132E-3
# shielded proton magnetic moment to nuclear magneton ratio
uspuN = 2.792775597
# proton magnetic shielding correction 1 - u p/up (H2O, sphere, 25 C)
spc = 25.687E-6
gamma_p = PhysicalQuantityInteractive(2.67522212E8 , '1/(s*T)')
gamma_p.__doc__ = """proton gyromagnetic ratio """
gamma_sp = PhysicalQuantityInteractive(2.67515341E8 , '1/(s*T)')
gamma_sp.__doc__ = """shielded proton gyromagnetic ratio (H2O, sphere, 25 C)"""
# Neutron, n
#-------------------------------------------------------------------------
m_n = PhysicalQuantityInteractive(1.67492716E-27 , 'kg')
m_n.__doc__ = """neutron mass """
mu_n = PhysicalQuantityInteractive(1.00866491578 , 'amu')
mu_n.__doc__ = """neutron mass (neutron relative atomic mass times amu) """
mnc2_J = PhysicalQuantityInteractive(1.50534946E-10 , 'J')
mnc2_J.__doc__ = """neutron mass energy equivalent """
mnc2_MeV = PhysicalQuantityInteractive(939.565330 , 'MeV')
mnc2_MeV.__doc__ = """neutron mass energy equivalent in MeV """
# neutron-electron mass ratio
mnme = 1838.6836550
# neutron-muon mass ratio
mnmu = 8.89248478
# neutron-tau mass ratio
mnm = 0.528722
# neutron-proton mass ratio
mnmp = 1.00137841887
Molar_n = PhysicalQuantityInteractive(1.00866491578E-3 , 'kg/mol')
Molar_n.__doc__ = """neutron molar mass """
lambda_C_n = PhysicalQuantityInteractive(1.319590898E-15 , 'm')
lambda_C_n.__doc__ = """neutron Compton wavelength"""
un = PhysicalQuantityInteractive(-0.96623640E-26 , 'J/T')
un.__doc__ = """neutron magnetic moment """
# neutron magnetic moment to Bohr magneton ratio
unuB = -1.04187563E-3
# neutron magnetic moment to nuclear magneton ratio
unuN = -1.91304272
# neutron g-factor
g_n = -3.82608545
# neutron-electron magnetic moment ratio
unue = 1.04066882E-3
# neutron-proton magnetic moment ratio
unup = -0.68497934
# neutron to shielded proton magnetic moment ratio (H2O, sphere, 25 C)
unusp = -0.68499694
gamma_n = PhysicalQuantityInteractive(1.83247188E8 , '1/(s*T)')
gamma_n.__doc__ = """neutron gyromagnetic ratio """
# Deuteron, d
#-------------------------------------------------------------------------
m_d = PhysicalQuantityInteractive(3.34358309E-27 , 'kg')
m_d.__doc__ = """deuteron mass """
mu_d = PhysicalQuantityInteractive(2.01355321271 , 'amu')
mu_d.__doc__ = """deuteron mass (deuteron relative atomic mass times amu) """
mdc2_J = PhysicalQuantityInteractive(3.00506262E-10 , 'J')
mdc2_J.__doc__ = """deuteron mass energy equivalent """
mdc2_eV = PhysicalQuantityInteractive(1875.612762 , 'MeV')
mdc2_eV.__doc__ = """deuteron mass energy equivalent in MeV """
# deuteron-electron mass ratio
mdme = 3670.4829550
# deuteron-proton mass ratio
mdmp = 1.99900750083
Molar_d = PhysicalQuantityInteractive(2.01355321271E-3 , 'kg/mol')
Molar_d.__doc__ = """deuteron molar mass """
ud = PhysicalQuantityInteractive(0.433073457E-26 , 'J/T')
ud.__doc__ = """deuteron magnetic moment """
# deuteron magnetic moment to Bohr magneton ratio
uduB = 0.4669754556E-3
# deuteron magnetic moment to nuclear magneton ratio
uduN = 0.8574382284
# deuteron-electron magnetic moment ratio
udue = -4.664345537E-4
# deuteron-proton magnetic moment ratio
udup = 0.3070122083
# deuteron-neutron magnetic moment ratio
udun = -0.44820652
# Helion, h
#-------------------------------------------------------------------------
m_h = PhysicalQuantityInteractive(5.00641174E-27 , 'kg')
m_h.__doc__ = """helion mass """
mu_h = PhysicalQuantityInteractive(3.01493223469 , 'amu')
mu_h.__doc__ = """helion mass (helion relative atomic mass times amu) """
mhc2_J = PhysicalQuantityInteractive(4.49953848E-10 , 'J')
mhc2_J.__doc__ = """helion mass energy equivalent """
mhc2_MeV = PhysicalQuantityInteractive(2808.39132 , 'MeV')
mhc2_MeV.__doc__ = """helion mass energy equivalent in MeV """
# helion-electron mass ratio
mhme = 5495.885238
# helion-proton mass ratio
mhmp = 2.99315265850
Molar_h = PhysicalQuantityInteractive(3.01493223469E-3 , 'kg/mol')
Molar_h.__doc__ = """helion molar mass """
ush = PhysicalQuantityInteractive(-1.074552967E-26 , 'J/T')
ush.__doc__ = """shielded helion magnetic moment (gas, sphere, 25 C)"""
# shielded helion magnetic moment to Bohr magneton ratio
ushuB = -1.158671474E-3
# shielded helion magnetic moment to nuclear magneton ratio
ushuN = -2.127497718
# shielded helion to proton magnetic moment ratio (gas, sphere, 25 C)
ushup = -0.761766563
# shielded helion to shielded proton magnetic moment ratio (gas/H2O, spheres, 25 C)
ushusp = -0.7617861313
gamma_h = PhysicalQuantityInteractive(2.037894764E8 , '1/(s*T)')
gamma_h.__doc__ = """shielded helion gyromagnetic (gas, sphere, 25 C) """
# Alpha particle,
#-------------------------------------------------------------------------
m_alpha = PhysicalQuantityInteractive(6.64465598E-27 , 'kg')
m_alpha.__doc__ = """alpha particle mass """
mu_alpha = PhysicalQuantityInteractive(4.0015061747 , 'amu')
mu_alpha.__doc__ = """alpha particle mass (alpha particle relative atomic mass times amu) """
malphac2_J = PhysicalQuantityInteractive(5.97191897E-10 , 'J')
malphac2_J.__doc__ = """alpha particle mass energy equivalent """
malphac2_MeV = PhysicalQuantityInteractive(3727.37904 , 'MeV')
malphac2_MeV.__doc__ = """alpha particle mass energy equivalent in MeV """
# alpha particle to electron mass ratio
malphame = 7294.299508
# alpha particle to proton mass ratio
malphamp = 3.9725996846
Molar_alpha = PhysicalQuantityInteractive(4.0015061747E-3 , 'kg/mol')
Molar_alpha.__doc__ = """alpha particle molar mass"""
# PHYSICO-CHEMICAL
#-------------------------------------------------------------------------
N_A = PhysicalQuantityInteractive(6.02214199E23 , '1/mol')
N_A.__doc__ = """Avogadro constant """
L = PhysicalQuantityInteractive(6.02214199E23 , '1/mol')
m_u = PhysicalQuantityInteractive(1.66053873E-27 , 'kg')
m_u.__doc__ = """atomic mass constant mu = 112m(12C) = 1 u = 10E-3 kg mol-1/NA"""
# atomic mass constant mu = 112m(12C) = 1 u = 10E-3 kg mol-1/NA
amu = m_u
muc2_J = PhysicalQuantityInteractive(1.49241778E-10 , 'J')
muc2_J.__doc__ = """energy equivalent of the atomic mass constant"""
muc2_MeV = PhysicalQuantityInteractive(931.494013 , 'MeV')
muc2_MeV.__doc__ = """energy equivalent of the atomic mass constant in MeV """
F = PhysicalQuantityInteractive(96485.3415 , 'C/mol')
F.__doc__ = """Faraday constant"""
N_Ah = PhysicalQuantityInteractive(3.990312689E-10 , 'J*s/mol')
N_Ah.__doc__ = """molar Planck constant """
R = PhysicalQuantityInteractive(8.314472 , 'J/(mol*K)')
R.__doc__ = """molar gas constant """
k_J = PhysicalQuantityInteractive(1.3806503E-23 , 'J/K')
k_J.__doc__ = """Boltzmann constant """
k_eV = PhysicalQuantityInteractive(8.617342E-5 , 'eV/K')
k_eV.__doc__ = """Boltzmann constant in eV """
n_0 = PhysicalQuantityInteractive(2.6867775E25 , '1/m**3')
n_0.__doc__ = """Loschmidt constant NA/Vm """
Vm_1 = PhysicalQuantityInteractive(22.413996E-3 , 'm**3/mol')
Vm_1.__doc__ = """molar volume of ideal gas RT/p T = 273.15 K, p = 101.325 kPa """
Vm_2 = PhysicalQuantityInteractive(22.710981E-3 , 'm**3/mol')
Vm_2.__doc__ = """molar volume of ideal gas RT/p T = 273.15 K, p = 100 kPa """
# Sackur-Tetrode constant (absolute entropy constant) 52 + ln_(2 mukT1/h2)3/2kT1/p0
# T1 = 1 K, p0 = 100 kPa
S_0R_1 = -1.1517048
# T1 = 1 K, p0 = 101.325 kPa
S_0R_2 = -1.1648678
sigma = PhysicalQuantityInteractive(5.670400E-8 , 'W/(m**2*K**4)')
sigma.__doc__ = """Stefan-Boltzmann constant """
c_1 = PhysicalQuantityInteractive(3.74177107E-16 , 'W*m**2')
c_1.__doc__ = """first radiation constant"""
c_1L = PhysicalQuantityInteractive(1.191042722E-16 , 'W*m**2/sr')
c_1L.__doc__ = """first radiation constant for spectral radiance"""
c_2 = PhysicalQuantityInteractive(1.4387752E-2 , 'm*K')
c_2.__doc__ = """second radiation constant"""
b = PhysicalQuantityInteractive(2.8977686E-3 , 'm*K')
b.__doc__ = """Wien displacement law constant b = maxT = c2/4.965 114231... """