##// END OF EJS Templates
Inherit history machinery from LoggingConfigurable...
Inherit history machinery from LoggingConfigurable HistoryManager uses log (in an error case, which is why we didn't spot it before). Closes gh-9351

File last commit:

r20547:8f4e2b41
r22182:f8924729
Show More
Trapezoid Rule.ipynb
971 lines | 73.7 KiB | text/plain | TextLexer

Basic Numerical Integration: the Trapezoid RuleĀ¶

A simple illustration of the trapezoid rule for definite integration:

$$ \int_{a}^{b} f(x)\, dx \approx \frac{1}{2} \sum_{k=1}^{N} \left( x_{k} - x_{k-1} \right) \left( f(x_{k}) + f(x_{k-1}) \right). $$
First, we define a simple function and sample it between 0 and 10 at 200 points
InĀ [1]:
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
InĀ [2]:
def f(x):
    return (x-3)*(x-5)*(x-7)+85

x = np.linspace(0, 10, 200)
y = f(x)

Choose a region to integrate over and take only a few points in that region

InĀ [3]:
a, b = 1, 8 # the left and right boundaries
N = 5 # the number of points
xint = np.linspace(a, b, N)
yint = f(xint)

Plot both the function and the area below it in the trapezoid approximation

InĀ [4]:
plt.plot(x, y, lw=2)
plt.axis([0, 9, 0, 140])
plt.fill_between(xint, 0, yint, facecolor='gray', alpha=0.4)
plt.text(0.5 * (a + b), 30,r"$\int_a^b f(x)dx$", horizontalalignment='center', fontsize=20);
No description has been provided for this image

Compute the integral both at high accuracy and with the trapezoid approximation

InĀ [5]:
from __future__ import print_function
from scipy.integrate import quad
integral, error = quad(f, a, b)
integral_trapezoid = sum( (xint[1:] - xint[:-1]) * (yint[1:] + yint[:-1]) ) / 2
print("The integral is:", integral, "+/-", error)
print("The trapezoid approximation with", len(xint), "points is:", integral_trapezoid)
The integral is: 565.2499999999999 +/- 6.275535646693696e-12
The trapezoid approximation with 5 points is: 559.890625