|
|
#!/usr/bin/env python
|
|
|
"""Run a Monte-Carlo options pricer in parallel."""
|
|
|
|
|
|
from IPython.kernel import client
|
|
|
import numpy as np
|
|
|
from mcpricer import price_options
|
|
|
|
|
|
# The MultiEngineClient is used to setup the calculation and works with all
|
|
|
# engine.
|
|
|
mec = client.MultiEngineClient(profile='mycluster')
|
|
|
|
|
|
# The TaskClient is an interface to the engines that provides dynamic load
|
|
|
# balancing at the expense of not knowing which engine will execute the code.
|
|
|
tc = client.TaskClient(profile='mycluster')
|
|
|
|
|
|
# Initialize the common code on the engines. This Python module has the
|
|
|
# price_options function that prices the options.
|
|
|
mec.run('mcpricer.py')
|
|
|
|
|
|
# Define the function that will make up our tasks. We basically want to
|
|
|
# call the price_options function with all but two arguments (K, sigma)
|
|
|
# fixed.
|
|
|
def my_prices(K, sigma):
|
|
|
S = 100.0
|
|
|
r = 0.05
|
|
|
days = 260
|
|
|
paths = 100000
|
|
|
return price_options(S, K, sigma, r, days, paths)
|
|
|
|
|
|
# Create arrays of strike prices and volatilities
|
|
|
nK = 10
|
|
|
nsigma = 10
|
|
|
K_vals = np.linspace(90.0, 100.0, nK)
|
|
|
sigma_vals = np.linspace(0.1, 0.4, nsigma)
|
|
|
|
|
|
# Submit tasks to the TaskClient for each (K, sigma) pair as a MapTask.
|
|
|
# The MapTask simply applies a function (my_prices) to the arguments:
|
|
|
# my_prices(K, sigma) and returns the result.
|
|
|
taskids = []
|
|
|
for K in K_vals:
|
|
|
for sigma in sigma_vals:
|
|
|
t = client.MapTask(my_prices, args=(K, sigma))
|
|
|
taskids.append(tc.run(t))
|
|
|
|
|
|
print "Submitted tasks: ", len(taskids)
|
|
|
|
|
|
# Block until all tasks are completed.
|
|
|
tc.barrier(taskids)
|
|
|
|
|
|
# Get the results using TaskClient.get_task_result.
|
|
|
results = [tc.get_task_result(tid) for tid in taskids]
|
|
|
|
|
|
# Assemble the result into a structured NumPy array.
|
|
|
prices = np.empty(nK*nsigma,
|
|
|
dtype=[('ecall',float),('eput',float),('acall',float),('aput',float)]
|
|
|
)
|
|
|
for i, price_tuple in enumerate(results):
|
|
|
prices[i] = price_tuple
|
|
|
prices.shape = (nK, nsigma)
|
|
|
K_vals, sigma_vals = np.meshgrid(K_vals, sigma_vals)
|
|
|
|
|
|
def plot_options(sigma_vals, K_vals, prices):
|
|
|
"""
|
|
|
Make a contour plot of the option price in (sigma, K) space.
|
|
|
"""
|
|
|
from matplotlib import pyplot as plt
|
|
|
plt.contourf(sigma_vals, K_vals, prices)
|
|
|
plt.colorbar()
|
|
|
plt.title("Option Price")
|
|
|
plt.xlabel("Volatility")
|
|
|
plt.ylabel("Strike Price")
|
|
|
|