##// END OF EJS Templates
Merge pull request #3834 from ivanov/nbconvert-better-tests...
Merge pull request #3834 from ivanov/nbconvert-better-tests This PR fixes a few issues with nbconvert tests The code for testing 'ipython nbconvert' prior to this PR did not work as intended, and simply swallowed errors when pandoc wasn't installed, for example. This PR adds a new get_output_error_code utility for easier checking of error (looking at return code as opposed to the contents of stdout for the word 'error'). This new machinery is leveraged when calling nbconvert during tests.

File last commit:

r11842:278f2737
r11892:fdb8764a merge
Show More
base.py
110 lines | 3.7 KiB | text/x-python | PythonLexer
"""
Module that re-groups transformer that would be applied to ipynb files
before going through the templating machinery.
It exposes a convenient class to inherit from to access configurability.
"""
#-----------------------------------------------------------------------------
# Copyright (c) 2013, the IPython Development Team.
#
# Distributed under the terms of the Modified BSD License.
#
# The full license is in the file COPYING.txt, distributed with this software.
#-----------------------------------------------------------------------------
#-----------------------------------------------------------------------------
# Imports
#-----------------------------------------------------------------------------
from ..utils.base import NbConvertBase
from IPython.utils.traitlets import Bool
#-----------------------------------------------------------------------------
# Classes and Functions
#-----------------------------------------------------------------------------
class Transformer(NbConvertBase):
""" A configurable transformer
Inherit from this class if you wish to have configurability for your
transformer.
Any configurable traitlets this class exposed will be configurable in profiles
using c.SubClassName.atribute=value
you can overwrite transform_cell to apply a transformation independently on each cell
or __call__ if you prefer your own logic. See corresponding docstring for informations.
Disabled by default and can be enabled via the config by
'c.YourTransformerName.enabled = True'
"""
enabled = Bool(False, config=True)
def __init__(self, **kw):
"""
Public constructor
Parameters
----------
config : Config
Configuration file structure
**kw : misc
Additional arguments
"""
super(Transformer, self).__init__(**kw)
def __call__(self, nb, resources):
if self.enabled:
return self.call(nb,resources)
else:
return nb, resources
def call(self, nb, resources):
"""
Transformation to apply on each notebook.
You should return modified nb, resources.
If you wish to apply your transform on each cell, you might want to
overwrite transform_cell method instead.
Parameters
----------
nb : NotebookNode
Notebook being converted
resources : dictionary
Additional resources used in the conversion process. Allows
transformers to pass variables into the Jinja engine.
"""
self.log.debug("Applying transform: %s", self.__class__.__name__)
try :
for worksheet in nb.worksheets:
for index, cell in enumerate(worksheet.cells):
worksheet.cells[index], resources = self.transform_cell(cell, resources, index)
return nb, resources
except NotImplementedError:
raise NotImplementedError('should be implemented by subclass')
def transform_cell(self, cell, resources, index):
"""
Overwrite if you want to apply a transformation on each cell. You
should return modified cell and resource dictionary.
Parameters
----------
cell : NotebookNode cell
Notebook cell being processed
resources : dictionary
Additional resources used in the conversion process. Allows
transformers to pass variables into the Jinja engine.
index : int
Index of the cell being processed
"""
raise NotImplementedError('should be implemented by subclass')
return cell, resources