##// END OF EJS Templates
Merge pull request #3834 from ivanov/nbconvert-better-tests...
Merge pull request #3834 from ivanov/nbconvert-better-tests This PR fixes a few issues with nbconvert tests The code for testing 'ipython nbconvert' prior to this PR did not work as intended, and simply swallowed errors when pandoc wasn't installed, for example. This PR adds a new get_output_error_code utility for easier checking of error (looking at return code as opposed to the contents of stdout for the word 'error'). This new machinery is leveraged when calling nbconvert during tests.

File last commit:

r11396:9c85fe9c
r11892:fdb8764a merge
Show More
coalescestreams.py
74 lines | 2.4 KiB | text/x-python | PythonLexer
"""Module that allows latex output notebooks to be conditioned before
they are converted. Exposes a decorator (@cell_preprocessor) in
addition to the coalesce_streams pre-proccessor.
"""
#-----------------------------------------------------------------------------
# Copyright (c) 2013, the IPython Development Team.
#
# Distributed under the terms of the Modified BSD License.
#
# The full license is in the file COPYING.txt, distributed with this software.
#-----------------------------------------------------------------------------
#-----------------------------------------------------------------------------
# Functions
#-----------------------------------------------------------------------------
def cell_preprocessor(function):
"""
Wrap a function to be executed on all cells of a notebook
Wrapped Parameters
----------
cell : NotebookNode cell
Notebook cell being processed
resources : dictionary
Additional resources used in the conversion process. Allows
transformers to pass variables into the Jinja engine.
index : int
Index of the cell being processed
"""
def wrappedfunc(nb, resources):
for worksheet in nb.worksheets :
for index, cell in enumerate(worksheet.cells):
worksheet.cells[index], resources = function(cell, resources, index)
return nb, resources
return wrappedfunc
@cell_preprocessor
def coalesce_streams(cell, resources, index):
"""
Merge consecutive sequences of stream output into single stream
to prevent extra newlines inserted at flush calls
Parameters
----------
cell : NotebookNode cell
Notebook cell being processed
resources : dictionary
Additional resources used in the conversion process. Allows
transformers to pass variables into the Jinja engine.
index : int
Index of the cell being processed
"""
outputs = cell.get('outputs', [])
if not outputs:
return cell, resources
last = outputs[0]
new_outputs = [last]
for output in outputs[1:]:
if (output.output_type == 'stream' and
last.output_type == 'stream' and
last.stream == output.stream
):
last.text += output.text
else:
new_outputs.append(output)
cell.outputs = new_outputs
return cell, resources