""" Module that re-groups transformer that would be applied to ipynb files before going through the templating machinery. It exposes a convenient class to inherit from to access configurability. """ #----------------------------------------------------------------------------- # Copyright (c) 2013, the IPython Development Team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file COPYING.txt, distributed with this software. #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- from ..utils.base import NbConvertBase from IPython.utils.traitlets import Bool #----------------------------------------------------------------------------- # Classes and Functions #----------------------------------------------------------------------------- class ConfigurableTransformer(NbConvertBase): """ A configurable transformer Inherit from this class if you wish to have configurability for your transformer. Any configurable traitlets this class exposed will be configurable in profiles using c.SubClassName.atribute=value you can overwrite transform_cell to apply a transformation independently on each cell or __call__ if you prefer your own logic. See corresponding docstring for informations. Disabled by default and can be enabled via the config by 'c.YourTransformerName.enabled = True' """ enabled = Bool(False, config=True) def __init__(self, **kw): """ Public constructor Parameters ---------- config : Config Configuration file structure **kw : misc Additional arguments """ super(ConfigurableTransformer, self).__init__(**kw) def __call__(self, nb, resources): if self.enabled: return self.call(nb,resources) else: return nb, resources def call(self, nb, resources): """ Transformation to apply on each notebook. You should return modified nb, resources. If you wish to apply your transform on each cell, you might want to overwrite transform_cell method instead. Parameters ---------- nb : NotebookNode Notebook being converted resources : dictionary Additional resources used in the conversion process. Allows transformers to pass variables into the Jinja engine. """ try : for worksheet in nb.worksheets : for index, cell in enumerate(worksheet.cells): worksheet.cells[index], resources = self.transform_cell(cell, resources, index) return nb, resources except NotImplementedError: raise NotImplementedError('should be implemented by subclass') def transform_cell(self, cell, resources, index): """ Overwrite if you want to apply a transformation on each cell. You should return modified cell and resource dictionary. Parameters ---------- cell : NotebookNode cell Notebook cell being processed resources : dictionary Additional resources used in the conversion process. Allows transformers to pass variables into the Jinja engine. index : int Index of the cell being processed """ raise NotImplementedError('should be implemented by subclass') return cell, resources