""" IPython extension: %lookfor command for searching docstrings """ # Pauli Virtanen <pav@iki.fi>, 2008. import re, inspect, pkgutil, pydoc #------------------------------------------------------------------------------ # Lookfor functionality #------------------------------------------------------------------------------ # Cache for lookfor: {id(module): {name: (docstring, kind, index), ...}...} # where kind: "func", "class", "module", "object" # and index: index in breadth-first namespace traversal _lookfor_caches = {} # regexp whose match indicates that the string may contain a function signature _function_signature_re = re.compile(r"[a-z_]+\(.*[,=].*\)", re.I) def lookfor(what, modules=None, import_modules=True, regenerate=False): """ Search for objects whose documentation contains all given words. Shows a summary of matching objects, sorted roughly by relevance. Parameters ---------- what : str String containing words to look for. module : str, module Module whose docstrings to go through. import_modules : bool Whether to import sub-modules in packages. Will import only modules in __all__ regenerate: bool Re-generate the docstring cache """ # Cache cache = {} for module in modules: try: c = _lookfor_generate_cache(module, import_modules, regenerate) cache.update(c) except ImportError: pass # Search # XXX: maybe using a real stemming search engine would be better? found = [] whats = str(what).lower().split() if not whats: return for name, (docstring, kind, index) in cache.iteritems(): if kind in ('module', 'object'): # don't show modules or objects continue ok = True doc = docstring.lower() for w in whats: if w not in doc: ok = False break if ok: found.append(name) # Relevance sort # XXX: this is full Harrison-Stetson heuristics now, # XXX: it probably could be improved kind_relevance = {'func': 1000, 'class': 1000, 'module': -1000, 'object': -1000} def relevance(name, docstr, kind, index): r = 0 # do the keywords occur within the start of the docstring? first_doc = "\n".join(docstr.lower().strip().split("\n")[:3]) r += sum([200 for w in whats if w in first_doc]) # do the keywords occur in the function name? r += sum([30 for w in whats if w in name]) # is the full name long? r += -len(name) * 5 # is the object of bad type? r += kind_relevance.get(kind, -1000) # is the object deep in namespace hierarchy? r += -name.count('.') * 10 r += max(-index / 100, -100) return r def relevance_sort(a, b): dr = relevance(b, *cache[b]) - relevance(a, *cache[a]) if dr != 0: return dr else: return cmp(a, b) found.sort(relevance_sort) # Pretty-print s = "Search results for '%s'" % (' '.join(whats)) help_text = [s, "-"*len(s)] for name in found: doc, kind, ix = cache[name] doclines = [line.strip() for line in doc.strip().split("\n") if line.strip()] # find a suitable short description try: first_doc = doclines[0].strip() if _function_signature_re.search(first_doc): first_doc = doclines[1].strip() except IndexError: first_doc = "" help_text.append("%s\n %s" % (name, first_doc)) # Output if len(help_text) > 10: pager = pydoc.getpager() pager("\n".join(help_text)) else: print "\n".join(help_text) def _lookfor_generate_cache(module, import_modules, regenerate): """ Generate docstring cache for given module. Parameters ---------- module : str, None, module Module for which to generate docstring cache import_modules : bool Whether to import sub-modules in packages. Will import only modules in __all__ regenerate: bool Re-generate the docstring cache Returns ------- cache : dict {obj_full_name: (docstring, kind, index), ...} Docstring cache for the module, either cached one (regenerate=False) or newly generated. """ global _lookfor_caches if module is None: module = "numpy" if isinstance(module, str): module = __import__(module) if id(module) in _lookfor_caches and not regenerate: return _lookfor_caches[id(module)] # walk items and collect docstrings cache = {} _lookfor_caches[id(module)] = cache seen = {} index = 0 stack = [(module.__name__, module)] while stack: name, item = stack.pop(0) if id(item) in seen: continue seen[id(item)] = True index += 1 kind = "object" if inspect.ismodule(item): kind = "module" try: _all = item.__all__ except AttributeError: _all = None # import sub-packages if import_modules and hasattr(item, '__path__'): for m in pkgutil.iter_modules(item.__path__): if _all is not None and m[1] not in _all: continue try: __import__("%s.%s" % (name, m[1])) except ImportError: continue for n, v in inspect.getmembers(item): if _all is not None and n not in _all: continue stack.append(("%s.%s" % (name, n), v)) elif inspect.isclass(item): kind = "class" for n, v in inspect.getmembers(item): stack.append(("%s.%s" % (name, n), v)) elif callable(item): kind = "func" doc = inspect.getdoc(item) if doc is not None: cache[name] = (doc, kind, index) return cache #------------------------------------------------------------------------------ # IPython connectivity #------------------------------------------------------------------------------ from IPython.core import ipapi ip = ipapi.get() _lookfor_modules = ['numpy', 'scipy'] def lookfor_f(self, arg=''): r""" Search for objects whose documentation contains all given words. Shows a summary of matching objects, sorted roughly by relevance. Usage ----- %lookfor +numpy some words Search module 'numpy' %lookfor_modules numpy scipy Set default modules whose docstrings to search """ lookfor(arg, modules=_lookfor_modules) def lookfor_modules_f(self, arg=''): global _lookfor_modules if not arg: print "Modules included in %lookfor search:", _lookfor_modules else: _lookfor_modules = arg.split() ip.expose_magic('lookfor', lookfor_f) ip.expose_magic('lookfor_modules', lookfor_modules_f)