{ "metadata": { "name": "Gun Data" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Some gun violence analysis with Wikipedia data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "As [requested by John Stokes](https://twitter.com/jonst0kes/status/282330530412888064),\n", "here are per-capita numbers for gun-related homicides,\n", "relating to GDP and total homicides,\n", "so the situation in the United States can be put in context relative to other nations." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "main data source is UNODC (via Wikipedia [here](http://en.wikipedia.org/wiki/List_of_countries_by_intentional_homicide_rate)\n", "and [here](http://en.wikipedia.org/wiki/List_of_countries_by_firearm-related_death_rate)).\n", "\n", "GDP data from World Bank, again [via Wikipedia](http://en.wikipedia.org/wiki/List_of_countries_by_GDP_(PPP)_per_capita).\n", "\n", "If the numbers on Wikipedia are inaccurate, or their relationship is not sound\n", "(e.g. numbers taken from different years, during which significant change occured)\n", "then obviously None of this analysis is valid.\n", "\n", "To summarize the data,\n", "every possible way you look at it the US is lousy at preventing gun violence.\n", "Even when compared to significantly more violent places,\n", "gun violence in the US is a serious problem,\n", "and when compared to similarly wealthy places,\n", "the US is an outstanding disaster." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**UPDATE:** the relationship of the gun data and totals does not seem to be valid.\n", "[FBI data](http://www2.fbi.gov/ucr/cius2009/offenses/violent_crime/index.html) suggests that\n", "the relative contribution of guns to homicides in the US is 47%,\n", "but relating these two data sources gives 80%.\n", "Internal comparisons should still be fine, but 'fraction' analysis has been stricken." ] }, { "cell_type": "code", "collapsed": false, "input": [ "%load_ext retina\n", "%pylab inline" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "Welcome to pylab, a matplotlib-based Python environment [backend: module://IPython.zmq.pylab.backend_inline].\n", "For more information, type 'help(pylab)'.\n" ] } ], "prompt_number": 1 }, { "cell_type": "code", "collapsed": false, "input": [ "from IPython.display import display\n", "import pandas\n", "pandas.set_option('display.notebook_repr_html', True)\n", "pandas.set_option('display.precision', 2)" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 2 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Some utility functions for display" ] }, { "cell_type": "code", "collapsed": false, "input": [ "def plot_percent(df, limit=10):\n", " df['Gun Percent'][:limit].plot()\n", " plt.ylim(0,100)\n", " plt.title(\"% Gun Homicide\")\n", " plt.show()\n" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 3 }, { "cell_type": "code", "collapsed": false, "input": [ "def plot_percapita(df, limit=10):\n", " df = df.ix[:,['Homicides', 'Gun Homicides']][:limit]\n", " df['Total Homicides'] = df['Homicides'] - df['Gun Homicides']\n", " del df['Homicides']\n", " df.plot(kind='bar', stacked=True, sort_columns=True)\n", " plt.ylabel(\"per 100k\")\n", " plt.show()\n" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 4 }, { "cell_type": "code", "collapsed": false, "input": [ "def display_relevant(df, limit=10):\n", " display(df.ix[:,['Homicides', 'Gun Homicides', 'Gun Data Source']][:limit])" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 8 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Load the data" ] }, { "cell_type": "code", "collapsed": false, "input": [ "totals = pandas.read_csv('totals.csv', '\\t', index_col=0)\n", "guns = pandas.read_csv('guns.csv', '\\t', index_col=0)\n", "gdp = pandas.read_csv('gdp.csv', '\\t', index_col=1)\n", "data = totals.join(guns).join(gdp)\n", "data['Gun Percent'] = 100 * data['Gun Homicides'] / data['Homicides']\n", "del data['Unintentional'],data['Undetermined'],data['Gun Suicides']\n", "data = data.dropna()" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 9 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Of all sampled countries (Found data for 68 countries),\n", "the US is in the top 15 in Gun Homicides per capita.\n", "\n", "Numbers are per 100k." ] }, { "cell_type": "code", "collapsed": false, "input": [ "data = data.sort(\"Gun Homicides\", ascending=False)\n", "display_relevant(data, 15)" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
HomicidesGun HomicidesGun Data Source
Country
El Salvador 69.2 50.4 OAS 2011[1]
Jamaica 52.2 47.4 OAS 2011[1]
Honduras 91.6 46.7 OAS 2011[1]
Guatemala 38.5 38.5 OAS 2011[1]
Colombia 33.4 27.1 UNODC 2011 [2]
Brazil 21.0 18.1 UNODC 2011[3]
Panama 21.6 12.9 OAS 2011[1]
Mexico 16.9 10.0 UNODC 2011[4]
Paraguay 11.5 7.3 UNODC 2000[11]
Nicaragua 13.6 7.1 OAS 2011[1]
United States 4.2 3.7 OAS 2012[5][6]
Costa Rica 10.0 3.3 UNODC 2002[7]
Uruguay 5.9 3.2 UNODC 2002[7]
Argentina 3.4 3.0 UNODC 2011[12]
Barbados 11.3 3.0 UNODC 2000[11]
\n", "
" ], "output_type": "display_data", "text": [ " Homicides Gun Homicides Gun Data Source\n", "Country \n", "El Salvador 69.2 50.4 OAS 2011[1]\n", "Jamaica 52.2 47.4 OAS 2011[1]\n", "Honduras 91.6 46.7 OAS 2011[1]\n", "Guatemala 38.5 38.5 OAS 2011[1]\n", "Colombia 33.4 27.1 UNODC 2011 [2]\n", "Brazil 21.0 18.1 UNODC 2011[3]\n", "Panama 21.6 12.9 OAS 2011[1]\n", "Mexico 16.9 10.0 UNODC 2011[4]\n", "Paraguay 11.5 7.3 UNODC 2000[11]\n", "Nicaragua 13.6 7.1 OAS 2011[1]\n", "United States 4.2 3.7 OAS 2012[5][6]\n", "Costa Rica 10.0 3.3 UNODC 2002[7]\n", "Uruguay 5.9 3.2 UNODC 2002[7]\n", "Argentina 3.4 3.0 UNODC 2011[12]\n", "Barbados 11.3 3.0 UNODC 2000[11]" ] } ], "prompt_number": 10 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Take top 30 Countries by GDP" ] }, { "cell_type": "code", "collapsed": false, "input": [ "top = data.sort('GDP')[-30:]" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 11 }, { "cell_type": "markdown", "metadata": {}, "source": [ "and rank them by Gun Homicides per capita:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "top_by_guns = top.sort(\"Gun Homicides\", ascending=False)\n", "display_relevant(top_by_guns, 5)\n", "plot_percapita(top_by_guns, 10)" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
HomicidesGun HomicidesGun Data Source
Country
United States 4.2 3.7 OAS 2012[5][6]
Israel 2.1 0.9 WHO 2012[10]
Canada 1.6 0.8 Krug 1998[13]
Luxembourg 2.5 0.6 WHO 2012[10]
Greece 1.5 0.6 Krug 1998[13]
\n", "
" ], "output_type": "display_data", "text": [ " Homicides Gun Homicides Gun Data Source\n", "Country \n", "United States 4.2 3.7 OAS 2012[5][6]\n", "Israel 2.1 0.9 WHO 2012[10]\n", "Canada 1.6 0.8 Krug 1998[13]\n", "Luxembourg 2.5 0.6 WHO 2012[10]\n", "Greece 1.5 0.6 Krug 1998[13]" ] }, { "html": [ "" ], "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAHDCAYAAABsyc0zAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4VGXC/vF7JpWQBqF3Ik1K6AEWjVL2h4ChuMgSIQiW\nFXWxwPoiKAYIoIJSXMG1sIoQQUTAgLIooEtQlBJBlKIgJQFi6EkgBJKZ3x95M28CAQJk5mGG7+e6\nvMycM+Tch5LcOc9znmOx2+12AQAAwKWspgMAAADciihhAAAABlDCAAAADKCEAQAAGEAJAwAAMIAS\nBgAAYIC3qw6Uk5OjyZMnq169eoqNjS2yb9y4cbLb7bJa8zthbGyswsPDXRUNAADA5VxWwubPn69O\nnTopJSXlkn0Wi0WjR4+Wn5+fq+IAAAAY5ZIStnLlSrVs2VL+/v7FljAvLy9NmTJFWVlZatmypQYM\nGHDZz7VmzRpnRgUAAChVXbp0KXa700vYzp07lZGRoe7du+uXX34p9j2jRo2Sj4+PbDabZs+erc2b\nN6tNmzaX/ZytWrVyVtwili9frujoaJccy5U89bwkzz03Tz0vyXPPjfNyP556bp56XpJ7nFtycvJl\n9zm9hG3dulUHDx7U1KlTlZmZqdOnTyskJES9evVyvMfHx0eSZLVa1aFDB+3bt++KJQwAAMDdOb2E\nxcTEOD7esWOHtmzZUqSAnTp1Sl9++aX69+8vm82mjRs3qmPHjs6OBQAAYJTLJuYXsFgskqSEhARF\nR0crNDRUeXl5GjNmjLy9vRUZGamIiAhXxwIAAHApl5awxo0bq3HjxpKkgQMHOrbHxMQUuWIGAADg\n6Vis9QoaNGhgOoJTeOp5SZ57bp56XpLnnhvn5X489dw89bwk9z83i91ut5sOcS3WrFnjsrsjAQC3\nHrvdrvT0dOXl5Tmm0AAXK6hPwcHBCgwMvOz7kpOTzS1RAQCAO0lPT1dQUJACAgJMR8FNzm6368SJ\nE8rJyVFYWNg1/3qGIwEAKCQvL48ChhKxWCwKCwtTTk7Odf16ShgAAIUwBIlrdb1/ZyhhAAAABjAn\nDACAq9i/36rUVOdft6hRw6Y6dWxOPw5uDpQwAACuIjXVql69gpx+nMTEzGsuYSkpKZo2bZp27dol\nHx8fZWZmqlatWho5cqRTFj+vWbOmUlJSSrz9Ri1evFhly5ZV9+7dL/uec+fO6X/+5380Y8YMWa3F\nl+Xo6GjNnj1bNWvWLPWM14sSBgCAm0pOTtbjjz+uuLg4TZ8+3bF9yZIlWrNmjVNK2OXmPzlrLl2/\nfv2u+h5/f3+98cYbV3yPxWK56eb7UcIAAHBDeXl5euyxxzR9+nTdcccdRfbdd999hlLhWlDCAABw\nQxs3blRYWNglBaw4Fw/FffbZZ/rqq6/05ptvav78+fr+++914cIFpaWl6fTp04qLi1OnTp2uO1tm\nZqYmTpyoX375RRaLRYGBgYqLi1OjRo1ks9lUu3ZtPffcc1q3bp0OHTqk4cOHKyMjQ59//rmysrLU\nu3dvPfPMM5KkV199VbVq1VJMTIzsdrtmzZqlFStWSJL8/Pw0ceJENWvWTM2bN9e2bdskST/99JMm\nTpyo7OxsnT9/Xl27dpXdbncssHrkyBHFxcXp6NGjslqtatiwoeLi4uTn56evv/5ar732miTJx8dH\nM2fOVO3ata/79+JKKGEAALihQ4cOXVIO0tPT9cgjj0iSDh8+rLVr1yo4OPiSobjCH1utVq1cuVJf\nffWVwsPDtWvXLg0ePFgbN24s9rjZ2dnq1atXsdsLPPXUU2rbtq1effVVSfmlaNCgQVq9erVCQ0N1\n9uxZhYSEaPHixcrIyFBkZKSGDBmi5cuX68KFC4qKitL999+v6tWrFznG22+/ra1bt2r58uXy8fHR\n7t27HedS8P+0tDQ9+uijmjdvnuOxRu+9956+//57WSwW2e12Pf3005o8ebLq1asnSZo3b56mTp2q\nF198UfHx8frXv/6lBg0a6Ntvv5W/v38J/jSuDyUMAAA3VKNGDR04cKDItkqVKikxMVGS1KJFC+Xl\n5ZXoc91zzz0KDw+XJDVq1Ehnzpy57HvLlCnjOEZhtWrVkiSdPXtWP/zwg95//33HvoiICEVFRWnF\nihUaNGiQvLy8FBsbKyn/sT/h4eHq06ePpPyrT82bN1dKSoqjhBUUrCVLluif//ynfHx8JEkNGza8\nJMeyZcvUvXv3Is+VfOSRRzR//nxJ0p49e5ScnKwRI0Y49ufm5jpWvP9//+//6e9//7t69eqlu+66\nS5UrV77i792NoIQBAOCG2rZtqxMnTigpKUl33nnnFd9rtVqLrOp++vTpIvsvfvZhQckpTTabzXHn\nor+/f5G7GL29vYtk8Pb2ls12fUt1WK1WFfdY7MLbqlatWmyRlKTnn39eDzzwgNatW6dnn31WDzzw\ngB566KHrynLVrE75rAAAwKm8vLz01ltvacSIEVq1alWRfSkpKUWGB2vVqqX169dLks6cOaO5c+c6\n7U7BgIAA/elPf9Kbb77p2LZt2zZ9++236tmz53V9zoIC1bdvX73++uu6cOGCJGnXrl3atWtXkff2\n6dNHq1at0u7dux3b3n33Xe3YsUOSVL9+fQUEBOiDDz5w7H/nnXf05ZdfSpLmzp2rihUratCgQXr0\n0Uf1448/XlfmkuBKGAAAV1Gjhk2JiZkuOc61aN26tT799FO99tprmj59unx9fSXlX2kaN26cQkJC\nJEkjR47UE088oY8//lihoaHq0aOHfvvtN0nFL91wpYJWkiUqZs6cqYkTJ6pnz56yWq0KCgrS/Pnz\nHXmutQAWvH/YsGGaPXu2evfuLavVKh8fH02YMKHIeypVqqQ5c+Zo7NixRSbmd+jQwfH55s+frxde\neEEff/yx8vLy1KRJEw0cOFBS/ppjXbt2VWhoqHx8fDRt2rRrynpN52Uv7prdTWzNmjVq1aqV6RgA\nAA915MgRVa1a1XQMuJEr/Z1JTk5Wly5dit13S1wJs+7fL2tqqkuOZatRQ7Y6dVxyLAAA4L5ujRKW\nmqqgYm6ndYbMxERKGAAAuCom5gMAABhACQMAADCAEgYAAGAAJQwAAMAAShgAAIABlDAAAAADbokl\nKgAAuBGuWm+StSZvLZQwAACuwlXrTV7LWpPPP/+843mIv/32m8qVK6cKFSpIkh588EH95S9/KZVM\nTz75pB544AF17Njxkn3R0dGKj49XixYtimwfMGCAhg8fXuyvuRE7duzQypUrNXLkyCu+b+LEiRo4\ncKDq1q1b7P5XX31VtWrVUkxMTKnmu1aUMAAA3NArr7zi+Pjvf/+7unXrpujo6BL92m+//VYhISFq\n2rTpVd97tedIFrf/cttvVOPGjdW4ceOrvu/FF18s9WM7A3PCAADwANfyKOj169dr+/btTkyDkuBK\nGAAAHiY9PV1xcXFK/d95bBUrVtSECRNUo0YNPfXUU1q3bp38/f21YMECvfnmmzpw4IBmzpwpm82m\njIwMPfLIIxowYECJjlWS8vfOO+9o6dKl8vHxkd1u1xNPPKHu3btLknr27KnOnTvrhx9+0JEjR9Sh\nQwdFR0fr9ddfV3Z2tqpXr663335bPj4+Wr9+vRYuXKg333xTkvTVV1/pjTfekN1uV3Z2tp588knd\nd999io6O1uzZs1WzZk0dPXpUcXFxSklJ0YULF3TbbbcpNDTUkS0nJ0evvPKKfvzxR3l7eysoKEjx\n8fGqUaOGUlJS9Mwzz+jChQvKzs7W888/f9mHcV8Pl5WwnJwcTZ48WfXq1VNsbGyRfUlJSVq1apWs\nVqvq1q2roUOHuioWAAAexW63a9CgQXryySfVu3dvSdKaNWsUExOjtWvX6o033tCrr76q2rVrO4qW\nr6+v5s6dq7JlyyonJ0dRUVH6y1/+Ih8fn6seb8SIEQoMDCyyrWCumiTNmTNHGzZs0GeffSZfX18d\nP35c/fr1U2hoqDp06CAvLy/t3r1bixYtkiTdd999mjlzppYsWSKr1aqnnnpKS5cuVf/+/YscY+vW\nrRo/fryWLFmiSpUqKSMjQ1u3bpX0f8OhdrtdgwcP1mOPPaY+ffpIkjZt2qT+/fvr5ZdfliTFx8er\nffv2iouLkyT9+uuvGjZsmFasWKG3335bPXv21EMPPaTff/9dGRkZ1/zncSUuK2Hz589Xp06dlJKS\nUmR7enq61qxZo/j4eFksFi1evFhr165V586dXRUNAACPsWfPHtlsNkcBk6QuXbrorbfe0oYNGxQV\nFSWp6BUsb29vTZ48Wbt375bdbtfRo0eVnp6u6tWrX/V406dPV/PmzYtsKzzhfdGiRXrjjTfk6+sr\nSQoLC9Pw4cP14YcfqkOHDpLybyQo0KZNG1WuXFlWa/6MqbZt2+rAgQOXHPezzz7TQw89pEqVKkmS\ngoODHedW4JdfftGFCxccBazg8z3wwAOO18uWLdNPP/2kd955x7EtPT1d2dnZ6tSpk0aPHq20tDR1\n6NBBd91111V/P66FS+aErVy5Ui1btnT8RhW2detWRUVFOSbwde3aVVu2bHFFLAAAbikFxeZiffr0\nUceOHbV48WJ9+umnqlevXonnmJXkfRe/x2azFclS+Eqal5eXAgICHK+9vb1ls9lKlOVil7s54OI8\nc+fOVWJiouO/jRs3qkyZMurSpYtWrVqliIgIffjhh3r00UevK8flOL2E7dy5UxkZGWrVqlWxf1BZ\nWVkKDg52vA4ODi71y30AANwq6tWrJx8fHy1btsyxbfXq1Tp27Jjat28vSfL391dWVpZjf3p6ulq3\nbi0p//t24eHEq7naXZAxMTF65ZVXdP78eUnSsWPHNGvWrCJXv65Hr1699P777+vYsWOSpNOnT2vt\n2rVF3tOkSRP5+/sX+b3YtGmTPvroI8fr+++/Xy+88IJyc3MlSRs3btSUKVMkSV988YVOnTqle++9\nVxMnTlRycvINZb6Y04cjt27dqoMHD2rq1KnKzMzU6dOnFRISol7/u95KUFBQkdKVkZFRpJQBAGCa\nrUYNZSYmuuQ416ugDFksFs2bN08vvfSS5syZI0mqXLmyPvroI3l753/bv+eeezRkyBCtXbtWkyZN\n0sSJE9W3b1+FhYWpQYMG6ty5c5GSdiPLTQwZMkS5ubnq3bu3Y2L+6NGjFRkZedVzKe7cCj5u2bKl\nXnrpJT300EOSpPPnz+tvf/vbJZ/rww8/1EsvvaT33ntPeXl5Cg8P18CBAx37X3jhBU2dOlXdu3eX\nr6+vAgMDHfPFgoKC9Mgjj8jX11d5eXl69dVXr/v3odjztF/LPa03aMeOHdqyZUuRiflHjx7V7Nmz\nNXbsWFmtVi1evFjly5e/7JywNWvWqFWrVtd0XO/1612yyJ6Uv9Be7h13uORYAIDSd+TIEVWtWtV0\nDLiRK/2dSU5OvuwdlS5foqKgwSYkJCg6OloVK1ZUp06dNHbsWHl5eal27drq16+fq2MBAAC4lEtL\nWOGVbgtfCoyKirrkjgYAAExw4QARPMT1/p1hxXwAAArx8vLS2bNnTceAG7Db7Tp+/Lj8/Pyu69ez\nYj4AAIVUqlRJ6enpOnXqlFOefwjPUHD1Kzg4+JLFakuKEgYAQCEWi0WVK1c2HQO3AIYjAQAADKCE\nAQAAGEAJAwAAMIASBgAAYAAlDAAAwABKGAAAgAGUMAAAAAMoYQAAAAZQwgAAAAyghAEAABhACQMA\nADCAEgYAAGAAJQwAAMAAShgAAIAB3qYDuMLpkJo6PW+5aw4WUkNlXXMkAADgxm6JEvbj6dvUK7aF\nS46VmJipO5TrkmMBAAD3xXAkAACAAZQwAAAAAyhhAAAABlDCAAAADKCEAQAAGEAJAwAAMIASBgAA\nYAAlDAAAwABKGAAAgAGUMAAAAAMoYQAAAAa45NmRc+fO1e7du+Xj46PIyEj17NmzyP5x48bJbrfL\nas3vhLGxsQoPD3dFNAAAACOcXsLOnTunJk2a6MEHH5QkjR8/XnfeeaeCg4Md77FYLBo9erT8/Pyc\nHQcAAOCm4PQS5u/vrzZt2kiSzp4969hWmJeXl6ZMmaKsrCy1bNlSAwYMcHYsAAAAo1wyHClJH3zw\ngZKSkjRw4ED5+voW2Tdq1Cj5+PjIZrNp9uzZ2rx5s6O4AQAAeCKXTcwfMmSI3nrrLW3ZskX79+8v\nss/Hxyc/jNWqDh06XLIfAADA0zi9hO3du1ebNm2SJPn6+iokJEQZGRmO/adOndKiRYskSTabTRs3\nblSDBg2cHQsAAMAopw9HVqlSRYmJiVqxYoUkqWHDhoqIiFBCQoKio6MVGhqqvLw8jRkzRt7e3oqM\njFRERISzYwEAABjl9BJWtmxZPfvss5dsHzhwoOPjmJgYxcTEODsKAADATYPFWgEAAAyghAEAABhA\nCQMAADCAEgYAAGAAJQwAAMAAShgAAIABlDAAAAADKGEAAAAGUMIAAAAMoIQBAAAYQAkDAAAwgBIG\nAABgACUMAADAAEoYAACAAZQwAAAAAyhhAAAABlDCAAAADKCEAQAAGEAJAwAAMIASBgAAYAAlDAAA\nwABKGAAAgAGUMAAAAAMoYQAAAAZQwgAAAAyghAEAABhACQMAADCAEgYAAGAAJQwAAMAAShgAAIAB\nlDAAAAADvF1xkLlz52r37t3y8fFRZGSkevbsWWR/UlKSVq1aJavVqrp162ro0KGuiAUAAGCM00vY\nuXPn1KRJEz344IOSpPHjx+vOO+9UcHCwJCk9PV1r1qxRfHy8LBaLFi9erLVr16pz587OjgYAAGCM\n04cj/f391aZNG0nS2bNnHdsKbN26VVFRUbJYLJKkrl27asuWLc6OBQAAYJRLhiMl6YMPPlBSUpIG\nDhwoX19fx/asrCzVqlXL8To4OFgZGRmuigUAAGCEyybmDxkyRG+99Za2bNmi/fv3O7YHBQUVKV0Z\nGRmOoUoAAABP5fQStnfvXm3atEmS5Ovrq5CQkCKlq0WLFkpKSpLNZpMkrV69Wq1bt3Z2LAAAAKOc\nPhxZpUoVJSYmasWKFZKkhg0bKiIiQgkJCYqOjlbFihXVqVMnjR07Vl5eXqpdu7b69evn7FgAAABG\nOb2ElS1bVs8+++wl2wcOHOj4OCoqSlFRUc6OAgAAcNNgsVYAAAADKGEAAAAGUMIAAAAMoIQBAAAY\nQAkDAAAwgBIGAABgACUMAADAAEoYAACAAZQwAAAAAyhhAAAABlDCAAAADKCEAQAAGEAJAwAAMIAS\nBgAAYAAlDAAAwABKGAAAgAGUMAAAAAMoYQAAAAZQwgAAAAyghAEAABhACQMAADCAEgYAAGAAJQwA\nAMAAShgAAIABlDAAAAADKGEAAAAGUMIAAAAMoIQBAAAYUKIStmvXrku2JSQklHoYAACAW0WJSti/\n/vUvpaamOl4vXrxYe/bscVooAAAAT+ddkjc99dRTmj59ul544QV999132r59u8aMGVPig3zxxRda\nv369vL29VbVqVT366KPy9v6/Q48bN052u11Wa34njI2NVXh4+DWeCgAAgPsoUQkLDw/XQw89pHHj\nxikkJEQvvPCC/Pz8SnSArKwsHTx4UJMmTZLFYtH8+fO1ceNG/elPf3K8x2KxaPTo0SX+nAAAAO7u\nsiXsk08+uWRbWFiY6tatq+XLl8tisahfv35XPUBgYKCGDRvmeJ2Tk6OKFSsWeY+Xl5emTJmirKws\ntWzZUgMGDLiWcwDcinX/flkLDe87k61GDdnq1HHJsQAA1+ayJezioiRJd9111w0dbOnSpQoICFD9\n+vWLbB81apR8fHxks9k0e/Zsbd68WW3atLmhYwE3K2tqqoJ69XLJsTITEylhAHCTumwJu/vuux0f\nnz9/XmfOnFHZsmXl6+t7zQex2Wz697//rSpVqqhv376X7Pfx8ZEkWa1WdejQQfv27aOEAQAAj3bZ\nEmaz2bRs2TIlJSXp3Llz8vf317lz5+Tn56eoqCj16dPHMZH+Ss6dO6dZs2bpzjvvVGRk5CX7T506\npS+//FL9+/eXzWbTxo0b1bFjxxs7KwAAgJvcZUvYvHnzdPbsWcXFxSk0NNSx/dSpU1qwYIE+/PBD\nDRky5KoHWLt2rfbs2aOsrCytXLlSktSpUyelpKQoOjpaoaGhysvL05gxY+Tt7a3IyEhFRETc+JkB\nAADcxC5bwn799VdNmjTpku2hoaF6/PHHS7xERY8ePdSjR48rvicmJkYxMTEl+nwAAACe4LLjiVcb\navTy8ir1MAAAALeKyzatypUra9myZbLb7UW222w2LV26VJUqVXJ6OAAAAE912eHIRx55RHPnztWw\nYcNUuXJllSlTRufOnVNaWppatmypRx991JU5AQAAPMplS5i/v78ee+wxnT9/XmlpacrOzlaZMmVU\npUqV61qmAgAAAP/nio8tSk9P13fffad9+/bp7NmzCggIUN26ddWhQwdVrlzZVRkBAAA8zmXnhCUn\nJ2v8+PGSpK5du6p///7q0qWLJGnChAnavHmzaxICAAB4oMteCVuyZIkmT56skJCQItsjIiJ09913\na+rUqaxqDwAAcJ0ueyXM29v7kgJWIDQ0VN7eVxzJBAAAwBVctoTZ7XalpaUVu+/IkSOy2WxOCwUA\nAODpLns5a+DAgYqPj1fr1q1Vp04dx7Mj9+3bpy1btujpp592ZU4AAACPctkS1qBBA02dOlWbN2/W\n/v37HUtU1K9fXzExMQoICHBlTgAAAI9yxYldAQEBioqKUlRUlKvyAAAA3BKu/IBIAAAAOMVlr4Rl\nZWVd9RcHBgaWahgAAIBbxWVL2N/+9jcFBwfLy8ur2P0Wi0Vvvvmm04IBAAB4ssuWsMGDB2vXrl16\n5plnXJkHAADglnDZOWH33HOPvLy8tGnTJlfmAQAAuCVc8e7IJ5544rLDkQAAwLWs+/fLmprqkmPZ\natSQrU4dlxzrVnXFEkYBAwDg5mFNTVVQr14uOVZmYiIlzMlYogIAAMAAShgAAIABlDAAAAADSlTC\n4uPjnZ0DAADgllKiEmaz2XTmzBlnZwEAALhlXPHuyALh4eF66aWX1LFjR/n4+EjKXzH/3nvvdWo4\nAAAAT1WiEubv76/27dsrLy9PeXl5zs6Ea8CaMQAAuKcSlbD777/f2TlwnVgzBgAA91SiOWEXLlzQ\nggULNHXqVElScnKyzp0759RgAAAAnqxEJSwhIUGVK1dWZmamJOmPP/7Qhx9+6NRgAAAAnqxEJSw1\nNVWdO3d2PMaoe/fuOnDggFODAQAAeLISzQmz2+2XbLNaS77O6xdffKH169fL29tbVatW1aOPPipv\n7/87dFJSklatWiWr1aq6detq6NChJf7cAAAA7qhETSokJESHDx92vP7qq69UsWLFEh0gKytLBw8e\n1KRJkzRhwgQFBQVp48aNjv3p6elas2aN4uPjHfvXrl17jacBAADgXkpUwgYNGqS5c+fq4MGDeu65\n5/Tf//5XDz74YIkOEBgYqGHDhslisUiScnJyihS4rVu3KioqyrG/a9eu2rJly7WeBwAAgFsp0XBk\n+fLl9fzzz+vIkSOSpGrVql3XwZYuXaqAgADVr1/fsS0rK0u1atVyvA4ODlZGRsZ1fX4AAAB3UeKJ\nXSkpKfrqq6+0Zs0apV7j4qA2m03vvfeefHx8FBMTU2RfUFBQkdKVkZGh4ODga/r8AAAA7qZEJezn\nn3/WjBkzVLlyZYWFhWnatGn65ZdfSnSAc+fOafr06YqIiCj2MUctWrRQUlKSbDabJGn16tVq3br1\nNZwCAACA+ynRcOSSJUv0wgsvKCwsTJLUrl07zZo1S02aNLnqr127dq327NmjrKwsrVy5UpLUqVMn\npaSkKDo6WhUrVlSnTp00duxYeXl5qXbt2urXr98NnBIAAMDNr0QlzGazOQqYJIWFhTmuXF1Njx49\n1KNHjyu+JyoqSlFRUSX6fAAAAJ6gRMOReXl5RdYKs9lsPMgbAADgBpSohEVFRenjjz+WlL9w68cf\nf6y77rrLqcEAAAA8WYmGI5ctW6bjx49r1apVkqTs7GyFhYVp6dKlkiSLxaI333zTeSkBAAA8TIlK\n2KxZs5ydAwAA4JZS8gdAAgAAoNRQwgAAAAyghAEAABhACQMAADCAEgYAAGAAJQwAAMAAShgAAIAB\nlDAAAAADKGEAAAAGUMIAAAAMoIQBAAAYQAkDAAAwgBIGAABgACUMAADAAEoYAACAAZQwAAAAAyhh\nAAAABlDCAAAADKCEAQAAGEAJAwAAMIASBgAAYIC36QBAcaz798uamuqSY9lq1JCtTh2XHAsAgAKU\nMNyUrKmpCurVyyXHykxMpIQBAFyO4UgAAAADKGEAAAAGUMIAAAAMoIQBAAAY4JKJ+bm5ufroo4+0\nc+dOvfzyy5fsHzdunOx2u6zW/E4YGxur8PBwV0QDAAAwwiUlbMGCBWratKl27txZ7H6LxaLRo0fL\nz8/PFXEAAACMc0kJi42NlSR98sknxe738vLSlClTlJWVpZYtW2rAgAGuiAWgFLG2GwBcm5tinbBR\no0bJx8dHNptNs2fP1ubNm9WmTRvTsQBcA9Z2A4Brc1NMzPfx8ZEkWa1WdejQQfv37zcbCAAAwMmM\nl7BTp05p0aJFkiSbzaaNGzeqQYMGhlMBAAA4l7HhyISEBEVHRys0NFR5eXkaM2aMvL29FRkZqYiI\nCFOxAAAAXMKlJazw8hQDBw50fBwTE6OYmBhXRgEAADDK+HAkAADArYgSBgAAYAAlDAAAwABKGAAA\ngAGUMAAAAAMoYQAAAAZQwgAAAAyghAEAABhACQMAADCAEgYAAGAAJQwAAMAAShgAAIABlDAAAAAD\nKGEAAAAGUMIAAAAMoIQBAAAYQAkDAAAwwNt0AAAAcGuz7t8va2qqS45lq1FDtjp1XHKsq6GEAQAA\no6ypqQrq1cslx8pMTLxpShjDkQAAAAZQwgAAAAyghAEAABhACQMAADCAEgYAAGAAJQwAAMAAShgA\nAIABlDAAAAADKGEAAAAGUMIAAAAMoIQBAAAY4PRnR+bm5uqjjz7Szp079fLLL1+yPykpSatWrZLV\nalXdunUafQahAAAgAElEQVQ1dOhQZ0cCAAAwzulXwhYsWKCmTZsWuy89PV1r1qxRfHy8JkyYoKCg\nIK1du9bZkQAAAIxz+pWw2NhYSdInn3xyyb6tW7cqKipKFotFktS1a1e9++676ty5s7NjAcAtz7p/\nv6ypqS45lq1GDdnq1HHJsQB34fQSdiVZWVmqVauW43VwcLAyMjIMJgKAW4c1NVVBvXq55FiZiYmU\nMOAiRifmBwUFFSldGRkZCg4ONpgIAADANYyWsBYtWigpKUk2m02StHr1arVu3dpkJAAAAJcwMhyZ\nkJCg6OhoVaxYUZ06ddLYsWPl5eWl2rVrq1+/fiYiAQAAuJTLSljh5SkGDhzo+DgqKkpRUVGuiuFx\nTofU1Ol5y11zsJAaKuuaIwEA4PGMTszHjfvx9G3qFdvCJcdKTMzUHcp1ybEAAPB0rJgPAABgAFfC\nAAAexZXrn0msgYbrRwkDAHgUV65/JrEGGq4fw5EAAAAGUMIAAAAMoIQBAAAYQAkDAAAwgBIGAABg\nACUMAADAAEoYAACAAZQwAAAAAyhhAAAABrBiPm5Kp0Nq6vS85a45WEgNlXXNkQAAcKCE4ab04+nb\n1Cu2hUuOlZiYqTuU65JjAQBQgOFIAAAAAyhhAAAABjAcCQBXYN2/X9bUVJcdz1ajhmx16rjseADM\noYQBwBVYU1MV1KuXy46XmZhICQNuEQxHAgAAGEAJAwAAMIASBgAAYAAlDAAAwABKGAAAgAGUMAAA\nAANYogJwMZ6LCQCQKGGAy3nqczEplwBwbShhAEqFp5ZLAHAW5oQBAAAYQAkDAAAwwCXDkYmJidq0\naZMkqVWrVurbt2+R/ePGjZPdbpfVmt8JY2NjFR4e7opoAAAARji9hO3cuVP79u1TfHy8JOmtt97S\n9u3b1axZM8d7LBaLRo8eLT8/P2fHAYBr4tIbDiRuOgBuIU4vYT/++KO6dOnieN2lSxdt2LChSAnz\n8vLSlClTlJWVpZYtW2rAgAHOjgUAJeLKGw4kbjoAbiVOL2GZmZkKCgpyvA4ODtbp06eLvGfUqFHy\n8fGRzWbT7NmztXnzZrVp08bZ0QAAAIxxegkLCgpSRkaG43VGRoaCg4OLvMfHx0eSZLVa1aFDB+3b\nt48SBgBOxtpugFlOL2GtWrXSqlWrHMOPa9euVceOHR37T506pS+//FL9+/eXzWbTxo0bi+wHADgH\na7sBZjm9hDVq1Ei7d+/Wiy++KCm/lDVr1kwJCQmKjo5WaGio8vLyNGbMGHl7eysyMlIRERHOjgUA\nAGCUS5ao6N27t3r37l1k28CBAx0fx8TEKCYmxhVRAAAAbgos1goAAGAAJQwAAMAAShgAAIABlDAA\nAAADKGEAAAAGuOTuSAAAXMWTn/fpqQvseup5XQ0lDADgUTz5eZ+eusCup57X1TAcCQAAYAAlDAAA\nwABKGAAAgAGUMAAAAAMoYQAAAAZQwgAAAAyghAEAABhACQMAADCAEgYAAGAAJQwAAMAAShgAAIAB\nlDAAAAADKGEAAAAGUMIAAAAMoIQBAAAYQAkDAAAwgBIGAABgACUMAADAAEoYAACAAZQwAAAAAyhh\nAAAABlDCAAAADKCEAQAAGEAJAwAAMMDbFQdJTEzUpk2bJEmtWrVS3759i+xPSkrSqlWrZLVaVbdu\nXQ0dOtQVsQAAAIxx+pWwnTt3at++fYqPj1d8fLzS0tK0fft2x/709HStWbNG8fHxmjBhgoKCgrR2\n7VpnxwIAADDKYrfb7c48wEcffaSIiAg1bdpUkvTrr79qw4YNevDBByVJX375pby9vdW5c2dJ0qlT\np/Tuu+/queeeK/bzrVmzxplxAQAASlWXLl2K3e704cjMzEwFBQU5XgcHB+v06dOO11lZWapVq1aR\n/RkZGZf9fJc7EQAAAHfi9OHIoKCgIqUqIyNDwcHBJd4PAADgiZxewlq1alVkjtfatWvVunVrx+sW\nLVooKSlJNptNkrR69eoi+wEAADyR0+eESdJnn31W5O7I++67TwkJCYqOjlZwcLDWrVunVatWycvL\nS7Vr19bDDz/s7EgAAABGuaSEAQAAoCgWawUAADDAJYu1ujObzSarla4K1zt69KgsFovsdrvj/35+\nfty4ApSyU6dOKTQ01HSMUpebmytv7//7Np+TkyM/Pz+DiW5McnLyFfe3atXKRUlKDyWsGMuWLVNk\nZKQOHz6shQsXqmXLlho4cKDpWNdt9OjRV9z/8ssvuyiJcx0/flzZ2dmSpAsXLqhu3bqGE92Y9957\nTwcOHFCTJk20Y8cO1ahRQzabTRkZGXr88ccVHh5uOmKp8JQfdC7+d3bs2DGFhITo9OnTqlChgkf8\nO1u/fr0+++wzZWVlycvLS+XLl9eECRNMx7ph06ZNU3BwsLp27aoWLVqYjlNqJk2apLi4OMfrmTNn\n6n/+538MJroxe/fudXx8/Phx/frrr2rbtq02b96s+vXrU8I8xZYtW9SnTx999dVXeu211/Tiiy+a\njnRDPOGL/9XMnTtX+/fv1+HDh1WlShWFhobq2WefNR3rhpQvX17Dhg1TuXLldPLkSc2bN09PPfWU\nUlNT9fbbbys+Pt50xBty8OBBLViwQOnp6Ro2bJjOnDnj1t8AC/87W7hwoRo2bKiWLVtq69at2rFj\nh8FkpWf58uWKj4/X1KlT9eyzz+qTTz4xHalUTJgwQYcPH9a6deu0dOlSNWvWTJ06dVJYWJjpaNfl\np59+0rZt25SWlqZ58+ZJyr8qdvToUcPJbsz999/v+Hjq1KmaMGGCAgMDFR0drdmzZxtMdv3c/8dP\nJ7DZbDp06JB8fX1lt9vl5eVlOlKpSk5O1ooVK5Sdna3z58+bjlMqdu/erbi4ONWqVUvjxo0rcgne\nXR0+fFjlypWTJJUrV86xyHGNGjVMxio1CQkJGj58uIKDg1W3bl19+umnpiOVmp07d6ply5aS8pfh\n+e233wwnKh3BwcHy9/eXt7e3AgMDdeTIEdORSk21atUUFRWlBg0aKCkpSXPmzNG0adP0xx9/mI52\nzapWrapWrVopKChIrVu3VqtWrdS+ffsiV8XcXVZWlgIDAyVJgYGBOnv2rOFE18f9v1M5Qe/evbVw\n4UINHjxYv/32mzp27Gg6UqlZsGCBypQpo02bNqlZs2b64osv9Pjjj5uOdcPKli0rSfL29lZeXp5O\nnDhhOFHpOH36tEJCQpSRkaHc3FxJ0vnz5x0fu7MLFy4oICBAUv6fm4+Pj+FEpefim84L1kF0dxUq\nVNDRo0d12223aeHChY7hf3e3evVqJSUlKSAgQF27dlVMTIysVquOHTumhIQEPf3006YjXpOKFSuq\nYsWKGjx4sBo3bmw6jlNYrVZHETtz5ozbTmmghBUjMjJSbdq00YkTJ9SgQQM1aNDAdKRSs3fvXr34\n4ovatm2bateurUOHDpmOVCqaNWum9PR0tW/fXpMmTXKUMnf217/+VZMnT1a9evW0Z88eDR06VFL+\nUNef//xnw+lunJ+fnw4fPixJ+uOPPxyFzBNEREToww8/1J/+9Cdt2LDB8excdzd06FD5+vqqT58+\n+u677zzmMXInT57UU089dcnwY4UKFdSmTRtDqa7fDz/8oHbt2unHH3/Ujz/+6NhusVg0aNAgg8lK\nT8HXx/DwcP3++++KjY01Hem6sE5YMXbs2KGlS5fq5MmTeuSRR/THH3/orrvuMh2rVLz00ksaP368\nJkyYoLi4OI0fP96jLlFL+XcVli9f3u2HkdeuXasOHTroyJEjqlq1qsqUKSPJcyayHz16VP/+97/1\n+++/q379+hoyZIgqVKhgOlapWb9+vX777TfVq1dPd955p+k4pWLOnDlFFtP+8MMPNXjwYIOJrl9K\nSkqR1xaLRZIcdyO787D/r7/+qgYNGuiXX34pst1isXjUlbFz587p8OHDqlatmvz9/U3HuS5cCSvG\nkiVL9Pzzz2vSpElq2LCh5s2b5zElrH379nrvvfeUmZmpf//732rXrp3pSNftP//5T5HXhZdzkKRu\n3bqZiFVq/vvf/6pz586X3AXpCQVMkvz9/TVy5Eh5e3srNzfXY4a2Ctxxxx264447TMcoFUeOHNGR\nI0e0c+dOxzIBubm52rp1q9uWsMTERMfXiuI88cQTLkxTugpGb5o0aWI4ifPY7XYdOHBAZ86c0alT\npySxRIXHyMvLc0zstlgsbtuwi9OjRw/t2LFDVapUUf369dWoUSPTka5b4T+XlJQU7du3zzH8U7t2\nbYPJSkfNmjU1ZcoURURESMr/u+juxbKwd955R4MHD1bFihV1/PhxJSQkaMSIEaZjlYr169dr6dKl\n8vb2dpRmd75L+eTJk9q7d6+ys7MdywRYLBY9+uijhpNdvyeffNJ0BKfz1CVFpPzlNvLy8lSzZk1H\nmaaEeYjQ0FDt2rVLkvTbb7953CJ+lStXVlBQkCRp3759brue1t133+34eNKkSRo1apT8/PwUFRWl\nqVOnmgtWSurVq2c6glNlZWWpYsWKkvL/TmZmZhpOVHqWLl2quLg4j1lYt3HjxmrcuLHKlCmje++9\n13ScUnfixAl9/fXXys7Olt1uV25urmMOpjvz1CVFpPzpDJMmTTId44ZRworx8MMPa968eTp79qy+\n/vprj/jHWMAT19OS8u+0K1gJ2tfX1yPuHixcMj2R3W7XmTNnVLZsWZ05c8Z0nFJVvnx5jylghVcp\nr1at2iWrlrvj1YeLzZgxQ507d9bKlSvVrVs3t1yWojievKRI+fLldf78efn6+pqOckMoYcXYvXt3\nkWUbkpOTPeILjZR/bpMnT9akSZM0ZswYvfnmm6YjlQpfX18dPXpUFStW1LFjx9z+H6ZU/JMO3HlI\n62L9+vXTxIkTddttt2nv3r1u/VSKizVs2FCLFy9WZGSkLBaLW0/0LrxKeXE84Wujt7e37r77bn37\n7bfq3LmzXn/9ddORSoWnLiki5X/NHz16tCIiImS1Wt32zk9KWDFWrFih1q1bO14vW7bMI77QSJ67\nnlZsbKxmzJihwMBAZWVl6bHHHjMd6YYVFK68vDwlJyd7zHIiBZo2baqxY8cqLS1NAwcOdNz96QnS\n0tJktVq1YsUKxzZ3nehdeJVyT+Xt7a2cnBwFBwfryJEjbr+yfAFPXVJEkjp16uT4AcedsURFIatX\nr9aaNWsct7xK+csBNGrUyGOGJBMTE9W+fXvt3LlT33zzjcqWLat//OMfpmOVmsKrKHua+Ph4jR07\n1nSMUpObm6vVq1crPT1dvXr1ktVq9ZghPE914MABrVy5ssjcKXd+FmGBffv2KSwsTBkZGZozZ47u\nvPNOde7c2XSsG/bWW2+pQ4cOatasmdsv2VOc48ePO1bKv3Dhgls+T5crYYV07dpVXbt21cSJE93+\neZGX07RpU1WqVEmVKlXS7bff7rbPRruYJ06sLVjHyG636/Dhw8rKyjKcqHS9//77aty4sb777jud\nO3dOCQkJGjlypOlYpWL79u1atmyZ4xuEv7+/R6zH98477+iBBx7QwoUL1b9/f495HNPx48dVt25d\nBQcHKy4u7pJ5b+7qz3/+s5KTk7V8+XKVL19ekZGRatu2relYpcJT5jd7xoJDpezFF1+UzWZTTk6O\ncnJyPOqb39y5cx0fV6pUyWN+OpoxY4bCwsK0fft2Va9e3SOWFUlMTNTy5cu1YsUK7d69W8OHDzcd\nqVT98ccf6tixo7y8vFSlShXHWj+eICEhQY899pgCAgL09NNPu/VSMIX5+/urSZMmKlOmjJo1a3bV\n+WLu4vPPPy/yetmyZYaSlK569eqpf//+jtXkFy1aZDhR6fGU5wW7Z2onW758ub7++mudPHlSgYGB\nqly5ssdcGWvUqJGWL1+uFi1aSJJbTxguzBMn1hasY+SpQ6yFn4Fps9nc9otocQIDA1WpUiV5e3ur\nSpUq2r9/v+lIpcLf31+ZmZkKCwvTTz/9pOPHj5uOdEMKT0EpuBGmYAqKJ1i0aJEOHz6sWrVqqW/f\nvo5pNp7AU+Y3e85XvVK0fv16vfbaa5o8ebJGjRql9957z3SkUnPixAmdPHmyyCM73HXCcGGeOLH2\n0KFDmj17tgICAnT27Fk9/vjjHlGYC9xzzz2aPn26Tpw4oRkzZnjUQrRBQUE6ceKEqlWrptWrV3vM\nVb7BgwfLx8dH999/v2NI0p15+hSUM2fOyG63KyAgwKOezSp5zvOCmZhfjMmTJ2vMmDF6+eWX9fzz\nz2vixIkeNSG6wNGjR1WhQgW3v7tEkn7//XdVqFDBoybWvvzyyxo6dKiqVKmi9PR0zZkzp9hlK9xZ\nWlqaDhw4oLp166pSpUqm45SajIwMBQYGKjs7W1988YVat27tlpOG4f7sdrt27NihtWvX6vjx4xo3\nbpzpSKXOnZ8XzJWwYtSsWVNHjx5Vs2bNNGvWLNNxStUHH3ygrl27as+ePfruu+8UEhLiEY/vKPgG\nVzCx1hOcP39eVapUkZQ/f+/ChQuGE5W+w4cPO/6tecLCiwUK7vIsW7asRyzxMG3aNMezWQuzWCxu\nORm6wJV+qPGENfkOHTqk5ORkbd++XT4+Pm7/DOQr3TCRkpLilktJUcKKUTCJ8d5779Uvv/zito/1\nKc7vv/+uGjVqaO3atRozZoxeeukl05FKxcGDB7Vy5UrHyuvu/s1Byp+bUlBMzp8/f8k3QHe3YMEC\nlSlTRps2bVKzZs20cuVKDRs2zHSs63a1q5Tu/E39xIkTKlOmjKKjo1W1alVJ8oi/j+78Z1ISCxcu\nVLt27fTMM894xHCkJy4cTAkrxuuvv+64Vb5Jkyb65z//6TF3ptlsNm3dulVlypTRhQsXPGIoUpJm\nz56tfv36qVatWpLkEed177336uWXX1bz5s21bds2de/e3XSkUrV37169+OKL2rZtm2rXrq3U1FTT\nkW5I4W/oJ06cUPny5Q2mKV0TJ07Uzp07tWLFCnl7e6t3794Mr7qBglEOi8WinJwc2Ww2t14U2ROu\nKl+MElbInj17tGfPHh08eFCrVq1yrDf1+++/m45WagYPHqwffvhBffr0UUpKinr27Gk6UqkICAhQ\nmzZtTMcoVW3btlXt2rW1b98+/elPf/KoOVOSLrm65+PjYzBN6ZoxY4YmTJhgOkapuv3223X77bcr\nNTVVy5cv16lTp9SzZ09FRESYjobLePXVVyXlP3XjwIEDqlWrluLj4w2nKh3Hjx9XQkKCjh8/rqFD\nhyovL0+33Xab6VjXzGucJ87Su04ZGRnKysrSr7/+qiZNmsjb21v+/v7q1auXgoKCTMcrFWFhYWre\nvLn8/PxUrlw5Va9e3XSkUnHkyBFZrVZVrFjRdJRStXXrVu3atUuSHFf5PEV2drb++9//6vDhw0pN\nTdXtt9+uevXqmY5VKo4eParMzExVqFBBubm5ysvL85glOIKDg+Xr66tt27YpIyPD43748SR33323\n7r77bnXq1ElRUVFKSUnxmD+v2bNnKzY2Vps3b1a3bt301ltv6e677zYd65p5xleFUlKnTh3VqVNH\n3t7euuOOO0zHKVWePgF127ZtWr9+vcqWLSurNX8NYnc/r8WLFysrK0sdO3bUhg0bdOTIEY+6HN+o\nUSPVqVNHVapUUf369T1mbSYpfyHJnTt3atWqVY5t7n7DiM1m07fffqvVq1erQYMGGjFihMqVK2c6\nFkooLCxMhw8fNh2j1GRnZ6tChQqS5NZDrJSwQnbu3KlKlSrpjjvuUG5urt59911lZ2dryJAhbj+/\nw90LydV44vn99NNPjiGtBg0aKC4uzqNK2Ny5czV+/Hg1btzYdJRS52lL2qxYsUIbNmxQZGSkRo0a\n5RGTvG8F//nPfxwfHzp0yGPuPpby57mdPn1aUv6C1u56bpSwQj7++GONGDFCUv5f3nbt2ikkJERz\n5szRc889ZzgdrsQTnx1ZcEXvcq/dnac+vUGSzp49q08//VTHjh1TTEyMJDmWG3FH8+bNU82aNfX9\n99/r+++/L7LPE38A8hSFH98WERHhuPPfEwwaNEjTpk3ToUOHNH36dA0ePNh0pOtCCSvEYrE41vdJ\nS0vTvffeK0mOh/Di5jVjxgx17txZK1euVLdu3fTHH3+YjnTDmjZtqk2bNqlt27bavHmzbr/9dtOR\nStXJkyc98ukNkjRnzhx169ZNCxYskL+/v2bPnq0xY8aYjnXdPv74Y9MRcA327NmjevXqXTJHKikp\nSXfeeaeZUKUsOTlZ48ePV2ZmplvP2aaEFZKXl6ezZ8/q+PHjCg0NlZS/Fk52drbhZLgaT3l25MVz\n97755hstWrRI2dnZCgoKcvvHxEj5P9QEBASoTp06jnXdJCkqKspgqtJ16tQpNWjQQJIUGhqqnJwc\nw4lwK/nggw/09NNPF7lRaceOHfr66689poT9/PPPHnHTHCWskPvuu09xcXEKDg7W008/LUn6/vvv\nFRkZaTgZrsZTnh15KwztfPLJJ+rbt6++/fZb/eUvf5GUf+V5xYoVevjhhw2nKx15eXmO4nX+/HmP\nuTMS7uHxxx/XzJkzNWbMGAUEBOjw4cN6//33Per5mOXLl9fYsWMdc0otFosGDRpkONW14ytDIS1a\ntHDMTynQrl07j5uL42lyc3MVExOjnJwc9e3bV5MnT1bfvn1Nx7phGRkZWr9+fZGnAPTr189wqhu3\nb98+BQcHy8fHp8gK1560Wk6/fv30yiuvKC0tTVOmTNF9991nOhJuIdWrV9eAAQP0+uuv68knn9S0\nadP0xBNPKCQkxHS0UtOpU6cir911gW5K2FVQwG5uq1evlsViUZcuXSTlr2F0zz336Ny5c4aT3bhp\n06apbdu2brkA4ZUULNB68fwvT3gMToGmTZsqPDxcaWlpqlatGl9H4HJNmzZVenq6RowYob/97W8e\n94SDJk2amI5QKihhcGvffPPNJesvde/eXePHj1ePHj0MpSo9nvJEg8Jyc3Ml6ZInAJw/f95EHKcY\nPny4nn76acfis+PHj3f7dcLgPgrPLc3Ly9Py5cu1fPlySe4/5cHT1rykhMGteXl5XfK4G0+56lC/\nfn3t2LFDt99+u9teai9Oq1at9M033xS5c2vdunVq3bq1uVClLCAgQMuWLVNkZKRH3XAA9+COZaSk\nPO3cKGH/q/CidlL++HLB8IjFYlG3bt1MxMJVXLhwodjtnnBVpWrVqpo5c2aRhYI94QtQdHS0Xn/9\ndaWkpCg8PFx79+7VoUOHNHLkSNPRSk1AQIBGjBih+fPn68CBA7LZbKYjAbgJUcL+V+FF7VJSUhwP\nTd6wYYNq165tMBmupFWrVlq3bl2Rqw1JSUlFJny7q5UrV2rWrFked2edr6+vRo0apU2bNunIkSNq\n1KiRYmNjPepqn7e3t6xWqwYPHqyvv/76kh/yAECihDkUHhqZNGmSRo0aJT8/P0VFRWnq1KnmguGK\noqOj9dprr+nAgQOOqyqpqan6xz/+YTraDatSpYrHDK1ezGq1ql27dqZjOE3hK+edOnWSl5eXwTQA\nblaUsGJcuHBBfn5+kvJ/ai+YSIybj5+fn0aPHq2NGzfqyJEjatCggcdcVfH29tbo0aPVuHFjWa1W\nt10H51b0+eefq02bNo7Xq1evZm4YgEtQworh6+uro0ePqmLFijp27JjbPhj0VmG1WtW+fXvTMUpd\nly5dZLFYPKJQ3ipWr16tNWvW6PDhw467uGw2mxo1amQ4GYCbkcXuSYvzlJKUlBT961//UmBgoLKy\nsvTYY4+pVq1apmPhFnTw4EEdOnRIbdu2ldVq9djhSU8zceJEj1qdHIBzUMKuICsrS4GBgaZj4Bb1\nn//8R4cOHdKePXv08MMPa8OGDYqNjTUdCwBQShiOLMbZs2f16aef6tixY4qJiZGUP0kacKVNmzZp\n7NixGj9+vOrVq6f333/fdCRcRUJCggYOHKjnn3/+kmFkT1heBEDpooQVY86cOerWrZsWLFggf39/\nzZ49W2PGjDEdC7eYi28IYW7ize+BBx6QJL3yyiuGkwBwB0wwKcapU6fUoEEDSVJoaKhycnIMJ8Kt\nqFGjRlqyZInOnTunxMRENWzY0HQkXEXB1a/4+Hh9+eWXOnXqlOFEAG5mlLBi5OXlOYrX+fPnPW6x\nTLiHmJgYhYWFqX79+ipXrpwGDBhgOhJKaPjw4fLx8dH777+vV155RV988YXpSABuQkzML8bPP/+s\nTz/9VGlpaapevbr69u3rMU9sh/v4/fffFR4e7nj98ccf669//avBRLgWubm5Sk5O1vfff6+cnBw9\n99xzpiMBuMlQwoqRm5ur8+fPKy0tTdWqVZPFYnEs3gq4yuuvv67mzZurY8eOmjVrlho0aKBevXqZ\njoUSmDVrliSpefPmat26tcqUKWM4EYCbEcORxZg0aZICAgIUHh4uf39/zZw503Qk3IJGjhypY8eO\n6ZlnntE999xDAXMjtWrV0rlz57Rv3z4dOnTIdBwANykmOxXy008/adu2bUpLS9O8efMk5V8VO3r0\nqOFkuBX9/PPP2rlzp+655x6tWbNG4eHhCggIMB0LJRAdHS1JSk9P16JFi7Rz507H1TEAKEAJK6Rq\n1ary8vLS9u3b1bp1a9ntdlmtVt1///2mo+EW9Pnnn2vUqFEKCAjQnj17NGXKFI0bN850LJTA1q1b\nlZycrH379qlOnTp6/PHHTUcCcBNiTlgxfv75ZzVt2tR0DNzi7HZ7kQU/MzIyFBwcbDARrubkyZMq\nW7asFi5cqHbt2iktLU3Z2dn685//LC8vL9PxANxkKGGF/PDDD2rXrp1jKLKAxWLRoEGDDKXCrWra\ntGlFXtvtdo0cOdJQGpTEq6++qtjYWFWrVk0bN27Ub7/9puDgYKWnp+vhhx82HQ/ATYbhyELKlSsn\nSWrVqlWR7Rc/fgRwhUGDBslisSgvL0/Jyck6c+aM6Ui4inPnzqlatWqS8ueYPvLII5LEMDKAYlHC\nCnkhp3sAAAWESURBVClYJZ81wXAzqFSpkuPjHj16aNKkSQbToCQuXLggScrMzCyyrA1P3QBQHEpY\nMX7++WctW7asyJUHHr4LVyv4xm2323Xo0CGdPHnScCJcTbt27TR58mTl5eVpyJAhkqRt27apRo0a\nZoMBuCkxJ6wYzz33nIYPH64aNWrIamUpNZgxfvx4x8cBAQHq2bOnGjdubDARSuLQoUMqW7asQkND\nJeXfUOHr6yt/f3/DyQDcbLgSVozg4GDVqlXLdAzc4uLi4oq8/vHHHw0lwbWoXr16kdfc0QrgcrjM\nU4zmzZtr3bp1ys7O1rlz55jPgZvC6tWrTUcAAJQiroQVY8uWLbJarfr6668d2y6+KgEAAHAjKGHF\nKDwXBwAAwBkoYYVcvEirv7+/br/9dlbPh0uNHj262O1paWkuTgIAcCbujizkl19+KbIwa3Z2tr75\n5hvddttt6tOnj8FkAADA01DCrsJms+mFF15gnTAAAFCquDvy/7d3PyFRbQEcx79zpxnTQoVwNhnk\nogma2pm0EBUJQWgnbYoQhEAJoU2rqGhRLQQXgiC5DSREJbeWIrVyYWgyWAslalEuQvs7ZiNv8XiD\n5sN8MHbf2PezmnvvmXPOvYvhN+ece+8vBEHg830kSVLeGcJ+4d27dzhYKEmS8s2F+Rt0d3dv2s5k\nMqysrNDZ2RlSjyRJ0l7lmrANlpaWNm3H43HKyso2LdaXJEnKB0OYJElSCFwTJkmSFAJDmCRJUggM\nYZIkSSEwhEmSJIXAR1RIKjhLS0uMjIzw9u1botEomUyGVCpFS0sLJSUlYXdPknbEuyMlFZRXr17R\n29vLpUuXqK6uBuDHjx8MDQ1x+PBhamtrd63tdDpNSUkJR48e3bU2JP05DGGSCkY2m+Xq1au0t7eT\nSqV+e/uDg4NUVFTQ0NDw29uWtPc4HSmpYLx8+ZLy8vJtA9i3b98YGBjg9evXRCIRiouLuXDhAkeO\nHAHgypUr9Pb25sqPjo6yurrK+fPnefjwId+/f+f9+/d8+vSJtbU1Ll++TFVVFX19fbx48YJ4PM7k\n5CQdHR0MDg6SSCSYnZ2loqKCN2/e0NraysmTJwGYnp7m0aNH3L59e3cvjKSCZAiTVDA+fPhAIpHY\ntkxfXx/Hjh2jra0NgMXFRbq6urh79y4HDx7cUn7jGzGCIGBqaoo7d+5QWlrK8+fPefDgATdu3KC9\nvT0Xuurr63PfnZ+f5+bNm8RiMZ48ecLjx49zIWx8fJzm5uZ8nb6kPca7IyUVjEOHDm15vdhGq6ur\nzM/Pc+7cudy+qqoqTp06xdTU1I7aqKuro7S0FIBUKrWlvZ9XcDQ0NBCLxQCora0lnU7z8eNHVlZW\nWFxcpKamZkftSvrzOBImqWAkk0mWl5eZm5vLjTbtxPr6OkHw93/OIAjIZrNEo1EAvn79mjsGsH//\n/tzneDzO+vr6tnX/E8AAioqKqKurY2JigkgkQmNj46a6JWkjfx0kFYxoNEpnZyf3799nenp607Gx\nsTH6+/s5ceIEo6Ojuf0LCwuk02lOnz4NQCKRYG5uDoDl5WWePXu2aUpyO7FYjEwms22ZpqYmxsfH\nefr0KWfPnv0vpyfpD+NImKSCkkwmuX79OsPDw4yMjLBv3z7W1tY4fvw4bW1tBEHAwMAAt27dyi3M\nv3btGgcOHADg4sWL9Pf3Mzw8THl5OWfOnCGbzebq/zmQbdyurq6mu7ubmZkZWltb/7V8IpGgsrKS\noqIiysrKdusySNoDfESFJOXZvXv3aGlpIZlMht0VSf9jTkdKUh4tLCzw+fNnA5ikX3I6UpLypKen\nhy9fvtDR0RF2VyQVAKcjJUmSQuB0pCRJUggMYZIkSSEwhEmSJIXAECZJkhQCQ5gkSVII/gKb9oj0\nTLovawAAAABJRU5ErkJggg==\n", "text": [ "" ] } ], "prompt_number": 12 }, { "cell_type": "markdown", "metadata": {}, "source": [ "**NOTE:** these bar graphs should not be interpreted as fractions of a total,\n", "as the two data sources do not appear to be comparable.\n", "But the red and blue bar graphs should still be internally comparable." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The US is easily #1 of 30 wealthiest countries in Gun Homicides per capita,\n", "by a factor of 4:1" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Adding USA, Canada, and Mexico to all of Europe,\n", "USA is a strong #2 behind Mexico in total gun homicides per-capita" ] }, { "cell_type": "code", "collapsed": false, "input": [ "index = (data['Region'] == 'Europe') + \\\n", " (data.index == 'United States') + \\\n", " (data.index == 'Canada') + \\\n", " (data.index == 'Mexico')\n", "selected = data[index]\n", "\n", "print \"By Total Gun Homicides\"\n", "sys.stdout.flush()\n", "\n", "by_guns = selected.sort(\"Gun Homicides\", ascending=False)\n", "#by_guns['Gun Homicides'].plot(kind='bar')\n", "plot_percapita(by_guns, limit=25)\n", "display_relevant(selected, limit=None)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "By Total Gun Homicides\n" ] }, { "html": [ "" ], "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAl4AAAHDCAYAAAD1MRSGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xdc1XX///EnhyEiguXAgXtkpJaapmZaatMkKxumlg2b\nV3VVV8OJiqOyNLvUtl2Ko+lAy8pV7tRQs8QtKoLhBgQVOJ/fH/zO+YKKIZ+B0ON+u3XLM3idt8fD\nOc/znj6GYRgCAACA7VzF3QAAAIB/CoIXAACAQwheAAAADiF4AQAAOITgBQAA4BCCFwAAgEP87H6A\n7OxszZgxQ/Hx8Ro9erQkKTY2VuvWrZOvr6+Cg4P17LPPKigoyO6mAAAAFCvbe7xmzpypJk2a5Ltu\n+fLlGjJkiIYOHaqKFStq586ddjcDAACg2Nne49WnTx9J0tdff+297t5779Uzzzyj4OBg1ahRQ82a\nNSvw5xcvXmx3EwEAACzTuXPnAm+zPXid7fTp05o3b57Gjh2rkJAQTZs2TcuWLVOHDh0K/JkWLVoU\nqva8efPUrVs3q5pK3RJe187a1KUudZ2tTV3qlpS6cXFxF7zd8cn1+/fvV7169RQSEiJJ6tixozZv\n3ux0MwAAABznePCqWrWqdu3apTNnzkiSNm7cqJo1azrdDAAAAMc5PtQYHBysu+66S9HR0XK5XKpW\nrZr69evndDMAAAAc51jw8mwlIUnXXXedrrvuOqceGgAA4JLgO3To0KHF3YgL2bNnj6pVq1bo+1eq\nVMmWdlC3ZNa1szZ1qUtdZ2tTl7oloW5ycrLq1atX4O0+hmEYph7BZosXLy70qkYAAC6WYRhKSUlR\nTk6OfHx8irs5uIQZhiFfX19VqVKlwNdKXFzcpbWdBAAAl5KUlBSVL1+eE1RQKBkZGUpJSVFYWFiR\nfp6zGgEA/2g5OTmELhRaUFCQcnJyivzzBC8AwD8aw4u4WGZeMwQvAAAAhzDHCwCAsyQkuJSYaH/f\nRHi4W3XquG1/HFw6CF4AAJwlMdGlyMjytj9ObGxakYLX/v37NXbsWG3dulX+/v5KS0tTrVq19Mor\nr6hZs2aWt7NmzZrav39/oa8365tvvlG5cuV0++23F3ifU6dO6bXXXtN7770nl+v8Iblbt26aNGnS\nJXVCDsELAIASJC4uTs8884yioqI0btw47/WzZs3S4sWLbQleBc1psmt+XI8ePf72PoGBgXr//fcv\neB8fH59Lbg4fwQsAgBIiJydHTz31lMaNG6f27dvnu+2ee+4pplbhYhC8AAAoIdauXauKFSueE7rO\n5+xhtrlz52rhwoWaMGGCpk2bpjVr1igrK0sHDx7UiRMnFBUVpZtuuqnIbUtLS9OIESP0559/ysfH\nR8HBwYqKilLjxo3ldrtVu3Ztvfrqq1q2bJkOHDig559/Xqmpqfruu++Unp6uu+66S//+978lSW+9\n9ZZq1aqlnj17yjAMTZw4UfPnz5cklSlTRiNGjFDTpk119dVXa9OmTZKk33//XSNGjFBmZqbOnDmj\nLl26yDAMefaJT05OVlRUlA4dOiSXy6UrrrhCUVFRKlOmjJYuXap33nlHkuTv76/x48erdu3aRX4u\nLoTgBQBACXHgwIFzAkFKSoqeeOIJSVJSUpKWLFmikJCQc4bZ8v7Z5XJpwYIFWrhwoerVq6etW7fq\n4Ycf1tq1a8/7uJmZmYqMjDzv9R4vvPCCWrVqpbfeektSbhDq3bu3Fi1apAoVKigjI0OhoaH65ptv\nlJqaqtatW6tv376aN2+esrKy1KFDB913332qUaNGvsf46KOPtHHjRs2bN0/+/v7atm2b9+/i+f/B\ngwfVr18/xcTEqFGjRpKkTz/9VGvWrJGPj48Mw9CLL76oUaNGqUGDBpKkmJgYjRkzRoMGDVJ0dLQ+\n/PBDNWrUSCtXrlRgYGAh/jWKhuAFAEAJER4err179+a7rkqVKoqNjZUkXXPNNYXe3PO2227zninY\nuHFjnTx5ssD7li1b1vsYedWqVUtS7m7uv/76qz7//HPvbc2aNVOHDh00f/589e7dW76+vurTp48k\nKSQkRPXq1VP37t0l5fYyXX311dq/f783eHlC1axZs/Tf//5X/v7+kqQrrrjinHbMmTNHt99+uzd0\nSdITTzyhadOmSZJ27typuLg4vfzyy97bs7OzVbFiRUnSLbfcon/961+KjIxUx44di7wrfWEQvAAA\nKCFatWqlo0ePavny5brhhhsueF+Xy6XTp097L584cSLf7cHBwfkue4KNldxut3fFYWBgYL7Vh35+\nfvna4OfnJ7e7aFtruFwune/o6bzXVatW7bzhUZLeeOMNPfTQQ1q2bJleeuklPfTQQ3rssceK1Ja/\nbastVQEAgOV8fX31wQcf6OWXX9aPP/6Y77b9+/fnG/qrVauWVqxYIUk6efKkpkyZYtsKv6CgILVr\n104TJkzwXrdp0yatXLlSXbt2LVJNT2i6++679e677yorK0uStHXrVm3dujXffbt3764ff/xR27Zt\n8173ySefaMuWLZKkhg0bKigoSP/73/+8t3/88cf66aefJElTpkxR5cqV1bt3b/Xr108bNmwoUpsL\no0T2eLkSEuRKTCzUfd3h4XLXqWNvgwAApUp4uFuxsWmOPM7Fatmypb799lu98847GjdunAICAiTl\n9igNHTpUoaGhkqRXXnlFzz77rL788ktVqFBBd9xxh3bs2CHp/NssXCiUFWY7ifHjx2vEiBHq2rWr\nXC6Xypcvr2nTpnnbc7Ghz3P/p59+WpMmTdJdd90ll8slf39/DR8+PN99qlSpos8++0yDBw/ON7m+\nbdu23nrTpk3TwIED9eWXXyonJ0dXXXWVevXqJSl3T7AuXbqoQoUK8vf319ixYy+qrRf19zLO1zd3\nCVm8eLFatGiR7zq/FStU/jyT/M4nLTZW2YVY/QEA+GdKTk5WtWrVirsZKEEu9JqJi4tT586dC/xZ\nhhoBAAAcQvACAABwCMELAADAIQQvAAAAhxC8AAAAHELwAgAAcAjBCwAAwCEELwAAAIeUyJ3rAQCw\n08WckGIGp6v88xC8AAA4iysxsdAnpJiRFht7UcHrjTfe8J4/uGPHDl122WWqVKmSJOmRRx7Rvffe\na0m7nnvuOT300EO6/vrrz7mtW7duio6O1jXXXJPv+gcffFDPP//8eX/GjC1btmjBggV65ZVXLni/\nESNGqFevXqpbt+55b3/rrbdUq1Yt9ezZ09L2XSyCFwAAJcSbb77p/fO//vUv3XrrrerWrVuhfnbl\nypUKDQ1VkyZN/va+f3du4/luL+h6syIiIhQREfG39xs0aJDlj20H5ngBAFBCXcxxyytWrNDmzZtt\nbA0Kgx4vAABKgZSUFEVFRSnx/89Nq1y5soYPH67w8HC98MILWrZsmQIDAzVz5kxNmDBBe/fu1fjx\n4+V2u5WamqonnnhCDz74YKEeqzCB7+OPP9bs2bPl7+8vwzD07LPP6vbbb5ckde3aVZ06ddKvv/6q\n5ORktW3bVt26ddO7776rzMxM1ahRQx999JH8/f21YsUKffHFF5owYYIkaeHChXr//fdlGIYyMzP1\n3HPP6Z577lG3bt00adIk1axZU4cOHVJUVJT279+vrKws1a9fXxUqVPC27fTp03rzzTe1YcMG+fn5\nqXz58oqOjlZ4eLj279+vf//738rKylJmZqbeeOONCx56fbFsD17Z2dmaMWOG4uPjNXr0aO/16enp\nmjhxol588UUFBgba3QwAAEotwzDUu3dvPffcc7rrrrskSYsXL1bPnj21ZMkSvf/++3rrrbdUu3Zt\nb7gKCAjQlClTVK5cOZ0+fVodOnTQvffeK39//799vJdfflnBwcH5rvPMPZOkzz77TKtXr9bcuXMV\nEBCgI0eOqEePHqpQoYLatm0rX19fbdu2TV999ZUk6Z577tH48eM1a9YsuVwuvfDCC5o9e7buv//+\nfI+xceNGDRs2TLNmzVKVKlWUmpqqjRs3Svq/oU7DMPTwww/rqaeeUvfu3SVJ69at0/333+/NIdHR\n0WrTpo2ioqIkSdu3b9fTTz+t+fPn66OPPlLXrl312GOPaffu3UpNTb3of48LsT14zZw5U02aNFF8\nfHy+6+fOnasnn3yS0AUAgEk7d+6U2+32hi5J6ty5sz744AOtXr1aHTp0kJS/p8rPz0+jRo3Stm3b\nZBiGDh06pJSUFNWoUeNvH2/cuHG6+uqr812Xd9L6V199pffff18BAQGSpIoVK+r555/X1KlT1bZt\nW0m5iwE8rr32WoWFhcnlyp0B1apVK+3du/ecx507d64ee+wxValSRZIUEhLi/bt5/Pnnn8rKyvKG\nLk+9hx56yHt5zpw5+v333/Xxxx97r0tJSVFmZqZuuukm9e/fXwcPHlTbtm3VsWPHv30+LobtwatP\nnz6SpK+//tp73YoVK/THH38oMTFRjRs3zvdCAQAA1vGEmbN1795dAwYM0MiRIyVJt9xyS6HnjBXm\nfmffx+1252tL3h4zX19fBQUFeS/7+fnJ7XYXqi1nK2iC/9ntmTJlii677LJz7te5c2f9+OOPWrly\npaZOnapp06bps88+K1JbzsfxyfUZGRlatWqVhg4dqtdff13p6en6+eefnW4GAAClRoMGDeTv7685\nc+Z4r1u0aJEOHz6sNm3aSJICAwOVnp7uvT0lJUUtW7aUJMXHx+cbKvw7f7d6sWfPnnrzzTd15swZ\nSdLhw4c1ceLEfL1cRREZGanPP/9chw8fliSdOHFCS5YsyXefq666SoGBgfmei3Xr1mnGjBney/fd\nd58GDhyo7OxsSdLatWv19ttvS5K+//57HT9+XHfeeadGjBihuLg4U20+m+OT67ds2aIrrrhCZcqU\nkSR17NhR8+bN04033uh0UwAAOC93eLjSYmMdeRwzPAHIx8dHMTExGjJkiLd3JiwsTDNmzJCfX+5H\n/W233aa+fftqyZIlGjlypEaMGKG7775bFStWVKNGjdSpU6d8wczM1hB9+/ZVdna27rrrLu/k+v79\n+6t169Z/+3c539/N8+fmzZtryJAheuyxxyRJZ86c0ZNPPnlOralTp2rIkCH69NNPlZOTo3r16qlX\nr17e2wcOHKgxY8bo9ttvV0BAgIKDg73zv8qXL68nnnhCAQEBysnJ0VtvvVXk5+G8f0/jYtaimtC/\nf3+NHj1a27dv19dff63+/fvL5XIpNjZWvr6+6tq163l/bvHixWrRokW+6/xWrCj0xnZpsbHKbt/e\ndPsBAKVTcnKyqlWrVtzNQAlyoddMXFzcBVdBOt7j1ahRIzVt2lSDBw+Wn5+fatSooccff9zpZgAA\nADjOseCVdyuJyMhIRTpwFAMAAH/HoYEflCJmXjPsXA8A+Efz9fVVRkZGcTcDJURGRoZ8fX2L/PPs\nXA8A+EerUqWKUlJSdPz4cVvOGkTpYRiGfH19vfuIFQXBCwDwj+bj46OwsLDibgb+IRhqBAAAcAjB\nCwAAwCEELwAAAIcQvAAAABxC8AIAAHAIwQsAAMAhBC8AAACHELwAAAAcQvACAABwCMELAADAIQQv\nAAAAhxC8AAAAHELwAgAAcAjBCwAAwCEELwAAAIcQvAAAABxC8AIAAHAIwQsAAMAhBC8AAACHELwA\nAAAcQvACAABwCMELAADAIQQvAAAAhxC8AAAAHELwAgAAcAjBCwAAwCEELwAAAIfYHryys7M1depU\n9e/fP9/1brdb48aN09ixY+1uAgAAwCXB9uA1c+ZMNWnS5Jzrv/32W7Vp08buhwcAALhk2B68+vTp\noxYtWuS7bu3atQoNDVWDBg3sfngAAIBLhuNzvJKSkrRp0ybdcsstMgzD6YcHAAAoNn5OP+DmzZt1\n6NAhjRkzRmfOnNH+/fs1bdo09e7d2+mmAAAAOMrx4HXrrbfq1ltvlSQdOnRIMTExhC4AAPCPUKzb\nSRiGIR8fn+JsAgAAgGMcC16jR48+57oqVaropZdecqoJAAAAxYoNVAEAABxC8AIAAHAIwQsAAMAh\nBC8AAACHELwAAAAcQvACAABwCMELAADAIQQvAAAAhxC8AAAAHELwAgAAcAjBCwAAwCEELwAAAIcQ\nvAAAABxC8AIAAHAIwQsAAMAhBC8AAACHELwAAAAcQvACAABwCMELAADAIQQvAAAAhxC8AAAAHELw\nAgAAcAjBCwAAwCEELwAAAIcQvAAAABxC8AIAAHAIwQsAAMAhBC8AAACHELwAAAAcQvACAABwCMEL\nAADAIX52P0B2drZmzJih+Ph4jR49WpK0cuVKff/99/L391e5cuX07LPPqly5cnY3BQAAoFjZ3uM1\nc+ZMNWnSxHs5JydHcXFxioqK0tChQ9WsWTMtWrTI7mYAAAAUO9uDV58+fdSiRQvvZV9fXz3//PMK\nCAiQJJ06dUqVK1e2uxkAAADFrljneC1btkyJiYlq165dcTYDAADAEbbP8SrIt99+q4yMDD333HPF\n1QQAAABHOd7jlZOTo48++kjlypVTnz59nH54AACAYuN4j9eGDRu0du1aHTx4UL/++qskqXnz5oqM\njHS6KQAAAI5yLHh5tpK49tpr9dlnnzn1sAAAAJcMNlAFAABwCMELAADAIQQvAAAAhxC8AAAAHELw\nAgAAcAjBCwAAwCEELwAAAIcQvAAAABxC8AIAAHAIwQsAAMAhBC8AAACHELwAAAAcQvACAABwCMEL\nAADAIQQvAAAAhxC8AAAAHELwAgAAcAjBCwAAwCEELwAAAIcQvAAAABxC8AIAAHAIwQsAAMAhBC8A\nAACHELwAAAAcQvACAABwCMELAADAIQQvAAAAhxC8AAAAHFKo4LV169Zzrps+fbrljQEAACjNChW8\nPvzwQyUmJnovf/PNN9q5c6dtjQIAACiN/ApzpxdeeEHjxo3TwIEDtWrVKm3evFkDBgwo1ANkZ2dr\nxowZio+P1+jRoyVJy5cv148//iiXy6W6devq0UcfLfrfAAAAoIQoVI9XvXr19Nhjj2no0KH69ddf\n1b9/f5UpU6ZQDzBz5kw1adLEezklJUWLFy9WdHS0hg8frvLly2vJkiVFaz0AAEAJUmCP19dff33O\ndRUrVlTdunU1b948+fj4qEePHn/7AH369MlXb+PGjerQoYN8fHwkSV26dNEnn3yiTp06FbrRJ0Jr\n6kTMvMLdOTRc5QpdGQAAwD4FBq/KlSufc13Hjh1NP2B6erpq1arlvRwSEqLU1NSLqrHhRH1F9rmm\nUPeNjU1Te2VfVH0AAAA7FBi8brzxRu+fz5w5o5MnT6pcuXIKCAgw9YDly5fPF7RSU1MVEhJiqiYA\nAEBJUGDwcrvdmjNnjpYvX65Tp04pMDBQp06dUpkyZdShQwd1795dLtfFbwN2zTXXaNKkSbrxxhvl\ncrm0aNEitWzZ0tRfAgAAoCQoMHjFxMQoIyNDUVFRqlChgvf648ePa+bMmZo6dar69u170Q9YuXJl\n3XTTTRo8eLB8fX1Vu3btQs0VAwAAKOkKDF7bt2/XyJEjz7m+QoUKeuaZZwq9nYSHZysJSerQoYM6\ndOhwUT8PAABQ0hU4Vvh3w4i+vr6WNwYAAKA0KzBdhYWFac6cOTIMI9/1brdbs2fPVpUqVWxvHAAA\nQGlS4FDjE088oSlTpujpp59WWFiYypYtq1OnTungwYNq3ry5+vXr52Q7AQAASrwCg1dgYKCeeuop\nnTlzRgcPHlRmZqbKli2rqlWrmt5SAgAA4J/ogmc1pqSkaNWqVdqzZ48yMjIUFBSkunXrqm3btgoL\nC3OqjQAAAKVCgXO84uLiNGzYMEm5x/rcf//96ty5syRp+PDhWr9+vTMtBAAAKCUK7PGaNWuWRo0a\npdDQ0HzXN2vWTDfeeKPGjBmja6+91vYGAgAAlBYF9nj5+fmdE7o8KlSoID+/C45SAgAA4CwFBi/D\nMHTw4MHz3pacnCy3221bowAAAEqjArutevXqpejoaLVs2VJ16tTxntW4Z88e/fbbb3rxxRedbCcA\nAECJV2DwatSokcaMGaP169crISHBu51Ew4YN1bNnTwUFBTnZTgAAgBLvghO1goKCOFcRAADAIhc+\nkBEAAACWKbDHKz09/W9/ODg42NLGAAAAlGYFBq8nn3xSISEh8vX1Pe/tPj4+mjBhgm0NAwAAKG0K\nDF4PP/ywtm7dqn//+99OtgcAAKDUKnCO12233SZfX1+tW7fOyfYAAACUWhdc1fjss88WONQIAACA\ni3PBVY2ELgAAAOuwnQQAAIBDCF4AAAAOIXgBAAA4pFDBKzo62u52AAAAlHqFCl5ut1snT560uy0A\nAACl2gW3k/CoV6+ehgwZouuvv17+/v6Scneuv/POO21tHAAAQGlSqOAVGBioNm3aKCcnRzk5OXa3\nCQAAoFQqVPC677777G4HAABAqVeoOV5ZWVmaOXOmxowZI0mKi4vTqVOnbG0YAABAaVOo4DV9+nSF\nhYUpLS1NkvTXX39p6tSptjYMAACgtClU8EpMTFSnTp28Rwjdfvvt2rt3r60NAwAAKG0KNcfLMIxz\nrnO5zO29OmXKFO3cuVMul0thYWF68skn5edXqOYAAACUSIVKT6GhoUpKSvJeXrhwoSpXrlzkB83I\nyND27dsVHR2tYcOG6eTJk0pJSSlyPQAAgJKgUF1MvXv31kcffaR9+/bp1VdfVZkyZfTqq68W+UGD\ngoLUrl07PfXUU/L399e1116r6tWrF7keAABASVCo4HX55ZfrjTfeUHJysiSZDkmHDx/W+vXrNX78\neAUEBGjChAnasmWLIiIiTNUFAAC4lBV6otb+/fu1cOFCLV68WImJiaYedMeOHWrevLkCAwPlcrnU\nvn17/fnnn6ZqAgAAXOoKFbz++OMPvffeewoLC1PFihU1duxYU0EpPDxcf/75p9xutyRp06ZNqlmz\nZpHrAQAAlASFGmqcNWuWBg4cqIoVK0qSrrvuOk2cOFFXXXVVkR60Zs2aatmypYYMGSIfHx9deeWV\natOmTZFqAQAAlBSFCl5ut9sbuiSpYsWK3t6qorrlllt0yy23mKoBAABQkhRqqDEnJyffXl5ut5vD\nsgEAAC5SoYJXhw4d9OWXX0rK3Uz1yy+/VMeOHW1tGAAAQGlTqKHGOXPm6MiRI/rxxx8lSZmZmapY\nsaJmz54tSfLx8dGECRPsayUAAEApUKjgNXHiRLvbAQAAUOpxOGIJ50pIkKuQ+6q5w8PlrlPH3gYB\nAIACEbxKOFdiospHRhbqvmmxsQQvAACKUaF3rgcAAIA5BC8AAACHELwAAAAcQvACAABwCMELAADA\nIQQvAAAAhxC8AAAAHELwAgAAcAjBCwAAwCEELwAAAIcQvAAAABxC8AIAAHAIwQsAAMAhBC8AAACH\nELwAAAAc4lfcDQAAoKRyJSTIlZhYqPu6w8PlrlPH3gbhkkfwAgCgiFyJiSofGVmo+6bFxhK8wFAj\nAACAUwheAAAADiF4AQAAOITgBQAA4BCCFwAAgEMIXgAAAA4heAEAADiE4AUAAOCQYg1eKSkpevfd\nd+V2u4uzGQAAAI4otuDldrs1f/58Pffcc3K56HgDAAClX7Elnrlz52rv3r0aP368li5dWlzNAAAA\ncEyxnNWYkpKiffv2KSoqSpI0YcIEhYWFKSIiojiaAwAA4Ihi6fGKi4tTq1at5HK55HK51L59e23Z\nsqU4mgIAAOCYYgle5cuX1++//+69vGHDBtWqVas4mgIAAOCYYhlqbNeunXbt2qVBgwbJx8dHTZo0\nUevWrYujKQAAAI4pluDl4+Ojhx9+uDgeGgAAoNiwjwMAAIBDCF4AAAAOIXgBAAA4hOAFAADgEIIX\nAACAQwheAAAADiF4AQAAOITgBQAA4BCCFwAAgEOKZed6AIAzXAkJciUmFuq+7vBwuevUKda6QGlH\n8AKAUsyVmKjykZGFum9abGzhg5dNdYHSjqFGAAAAhxC8AAAAHELwAgAAcAjBCwAAwCFMrgdQKrHq\nDsCliOAFoFRi1R2ASxFDjQAAAA4heAEAADiE4AUAAOAQghcAAIBDCF4AAAAOIXgBAAA4hOAFAADg\nEIIXAACAQwheAAAADmHnegAA/iEu5igtieO07EDwAgDgH+JijtKSOE7LDgSvs3CwLgAAsAvB6ywc\nrAsAAOxSrJPrT58+raioKMXExBRnMwAAABxRrMFr2rRpuummm4qzCQAAAI4ptuC1YMECNW/eXFWq\nVCmuJgAAADiqWIJXfHy8UlNT1aJFCxmGURxNAAAAcFyxTK7fuHGj9u3bpzFjxigtLU0nTpxQaGio\nIi9iiSsAAEBJUyzBq2fPnt4/b9myRb/99huhCwAAlHqXxJFBPj4+xd0EAAAA2xX7Pl4RERGKiIgo\n7mYAAADYrtiD16XmRGhNnYiZV7g7h4arnL3NAQAApQjB6ywbTtRXZJ9rCnXf2Ng0tVe2zS0CAACl\nxSUxxwsAAOCfgOAFAADgEIYaHeJKSJArMbFQ93WHh3P4NgAApRDByyGuxESVL+ReZWmxsQQvAABK\nIYYaAQAAHELwAgAAcAjBCwAAwCEELwAAAIcQvAAAABxC8AIAAHAIwQsAAMAhBC8AAACHELwAAAAc\nQvACAABwCMELAADAIQQvAAAAhxC8AAAAHELwAgAAcAjBCwAAwCEELwAAAIcQvAAAABziV9wNAKzg\nSkiQKzGxUPd1h4fLXaeOvQ0CAOA8CF4oFVyJiSofGVmo+6bFxhK8AADFgqFGAAAAhxC8AAAAHELw\nAgAAcAjBCwAAwCFMrgcAlHqsfMalotiC1/fff68VK1bIz89P1apVU79+/eTnRw4EAFiPlc+4VBRL\n0klPT9e+ffs0cuRI+fj4aNq0aVq7dq3atWtXHM1xxInQmjoRM69wdw4NVzl7mwMAAIpBsQSv4OBg\nPf30097Lp0+fVuXKlYujKY7ZcKK+IvtcU6j7xsamqb2ybW4RAABwWrGP7c2ePVtBQUFq2LBhcTcF\nAIBLAnPSSq9iC15ut1uTJ09W1apVdffddxdXMwAAuOQwJ630KpbgderUKU2cOFE33HCDWrduXRxN\nAAAAcFwzbFWmAAAgAElEQVSxBK8lS5Zo586dSk9P14IFCyRJN910kzp06FAczQEAAHBEsQSvO+64\nQ3fccUdxPDQAAECxKfbJ9QAAeDCpHKUdwQsAcMlgUjlKO4IXzotvnQAAWI/ghfPiWycAANYjeAEX\nQM8fAMBKBC/gAuj5AwBYieAFFAN60gDgn4ngBRQDetIA4J/JVdwNAAAA+KcgeAEAADiEoUY4irlN\nOFtJe02UtPYCuLQQvOAo5jbhbCXtNVHS2gvg0kLwAgAAlyy7epmLq/ea4FXCnQitqRMx8wp359Bw\nlbO3OQAAWMquXubi6r0meJVwG07UV2Sfawp139jYNLVXts0tQmnEvCYAsAbBC8DfYl4TAFiD4AUA\nlwB6FVHS8RouHIIXAFwC6FVEScdruHAIXjgvJu0DAGA9ghfOi0n7JRNd/QBwaSN4AaUIXf0AcGkj\neMFRdg1hMjQKACgJCF5wlF1DmHbVJSgCAKxE8AIugKAIALASwQsoRUpioCMsAvgnIXgB+Ft2rnJl\nBS2AfxKCF4BSqaTNzytpdQEUDcELQKlU0ubnlbS6BQW6HLdbvi5X/istCIpm6wKXCoIXAOCilZag\nmJWVJX9///xXWhAUS0Xdi6yNwiF4AQBKvZIWFC+Fuhdb+3yhzopAV9Lq/h2CFwAAMO1SCIuXQt2/\nU2zBKzY2VuvWrZMktWjRQnfffXdxNQUAAMARrr+/i/Xi4+O1Z88eRUdHKzo6WgcPHtTmzZuLoykA\nAACO8TEMw3D6QWfMmKFmzZqpSZMmkqTt27dr9erVeuSRR8657+LFi51uHgAAQJF17ty5wNuKZagx\nLS1N5cuX914OCQnRiRMnznvfCzUeAACgJCmWocby5csrNTXVezk1NVUhISHF0RQAAADHFEvwatGi\nhZYsWeK9vGTJErVs2bI4mgIAAOCYYpnjJUlz587Nt6rxnnvuKY5mAAAAOKbYghcAAMA/TbEMNQIA\nAPwTlaqd60+ePKly5ew7Vcrtdst19iGtuOQcOnRIPj4+MgzD+/8yZcqwgAOWiYuLu+DtLVq0MFX/\n+PHjqlChgqkaTnO73dq+fbsyMjIkSdnZ2WrdunUxtwooPM9nvGEYio+PV/369VWmTBnLH6dUBK8D\nBw5o0qRJCgoK0smTJ/Xss88qPDzcktpz5sxR69atlZSUpC+++ELNmzdXr169ilzv2LFj+uijj3Ti\nxAmFhobqySef1OWXX25JWyXp6NGjWrp0qTIzM2UYhrKzs/Xoo49aUvvIkSPKzMyUlHueVd26dU3X\nPHXqlNauXZuvvXfeeaepmp9++qn27t2rq666Slu2bFF4eLjcbrdSU1P1zDPPqF69eqbbbXUI37x5\ns+bMmeP90AoMDFRUVFSRavXv3z/f5cOHDys0NFQnTpxQpUqVNHr0aNPtXbFihebOnav09HT5+vrq\n8ssv1/Dhwy+6ztixYwu8zcfHRy+99JKZZuaTkJCgKlWqKCMjQ1999ZVuvPFGRUREFKnWrl27vH8+\ncuSItm/frlatWmn9+vVq2LCh6eA1duxYhYSEqEuXLrrmmsKfq1cYR44c0fTp03XkyBE9+uijysnJ\nUf369U3X/e9//yt/f39t2bJFV1xxhQICAkwHr7Vr12r27Nn5rjPz+j37d0OS98uZ2doeVv1u5LV3\n714tWLAg3/vka6+9ZrqtUu57WVZWlqTc9/Xg4GBL6krnbh21detWNW7c2HTduLg4JSUlqVOnTvLz\n81NAQIDpmlLua7hHjx7auHGjkpKSNH/+fMue53yMUmDUqFFGcnKyYRiG8ddffxmjRo2yrPagQYMM\nwzCM//3vf4ZhGMbAgQNN1XvnnXeM7du3G4ZhGDt27DDeeecdcw08y+DBg42lS5car732mrF48WJj\nxowZltT93//+ZwwdOtR48sknjSFDhhhjx461pO6IESOMr776yvj3v/9tfPHFF8bkyZNN1/zwww+N\no0ePGoZhGEePHjXGjx9vGIZh7N+/3/vvWVR79+413nzzTePll182tm/fbmzYsMF0ew3DMF5//XXj\nr7/+MoYPH24kJycbX3zxhSV1Z86cacTFxRmGYRgbNmwwpk+fbknd1157zcjMzDSGDx9upKWlFfnf\n7a+//irwv5SUFEva6jFo0CDj6NGjRkxMjLFt2zZjwIABltR9++23jbS0NMMwDCMtLc146623LKl7\n4MABY+bMmcaQIUOMr7/+2jh8+LAldceMGWMcOnTIGDp0qJGRkWEMHTrUkrqDBw82DCP3d9owDGPc\nuHGma7722mtGamqq6Trn8/333xs//vijcfr0aWPhwoXG/PnzLalr1e9GXgMGDDD++OMPY9CgQcbv\nv/9ufPvttxa01DBiY2ONl156yejbt6/xr3/9y4iOjrakrsfw4cON06dPG4aR+3ln9v3XMAxjxowZ\nxuzZs40BAwYYCQkJxgcffGC6pseQIUMMwzCMqVOn5rtstVIxbnbmzBlVrVpVklSlShVvereC2+3W\ngQMHFBAQIMMw5Ovra6peenq6GjZsKElq0KCBTp48aUUzvfz8/HTjjTcqJCREnTp1UlJSkiV1t23b\npqioKNWqVUtDhw6Vn581naXZ2dm67777VKlSJT3wwAM6fvy46ZpJSUm67LLLJEmXXXaZd3NeK3pB\np0+frueff14hISGqW7euvv32W9M1JSk4OFhVqlSRn5+fqlatqoSEBEvqxsfHq3nz5pKka665Rjt2\n7LCkbkhIiAIDA+Xn56fg4GAlJycXqU6VKlXy/VepUiWFhoYqNDRUZcuWtaStHj4+Prrsssvk4+Oj\nRo0aWfYtOT093dtLEBwc7O21NKt69erq0KGDGjVqpOXLl+uzzz7T2LFj9ddff5mqm5mZqUqVKkmS\npc+xv7+/JCkgIECnT5/WkSNHTNcMDg7O12NipTVr1uiWW25RQECAunTp4l1lb5ZVvxt5BQYG6qqr\nrlLZsmXVtGnTfD2uZqxYsULvvPOO6tevr7Fjx6pixYqW1PW49957NWHCBO3evVtTpkzRq6++arrm\nrl271L17dwUEBKh27dpKTEy0oKW53G63fvrpJwUHB+vkyZO2TS0qFUONbrdbZ86cUUBAgM6cOePt\nNrbCXXfdpS+++EIPP/ywduzYoeuvv95UvZycHO8wldvtVk5OjkUtzeXn56fTp08rJCREycnJOnTo\nkCV1PXPn/Pz8lJOTo6NHj1pS19fXVzk5OQoKClJ6erpl7fUM5aampio7O/dE+TNnznj/XFRZWVkK\nCgqSlPtceD5szCpfvryOHj2q6tWra9GiRZYEUEnn/C643W5L6laqVEmHDh1S/fr19cUXX3iHoM2Y\nN2+eli5dqmPHjik4OFhhYWEaNGiQBa3NVa1aNQ0aNEjdu3dXQkKCQkNDLanrcrm84cuqN+tFixZp\n+fLlCgoKUpcuXdSzZ0+5XC4dPnxY06dP14svvljk2j4+Pt4vI+np6ZYF0I4dO+rw4cPq3LmzBgwY\nYMmQUrdu3fThhx+qUaNGcrlc8vHxUceOHS1obe7zcKHLRWXH70ZgYKDS0tJUsWJF/f7775aEWkkK\nDQ2Vy+WSr6+v/Pz8dPjwYUvqekRERCgjI0MffvihBg4caMk827M/4616D5akZ599Vps2bVLXrl2V\nkpKiBx54wLLaefkOHTp0qC2VHRQcHKzPP/9cx48f1zfffKPbb79dNWrUsKR2jRo11KZNG506dUo1\na9Y0PRciJydHc+fOldvt1qxZs3TttddaMr/CIzw8XAEBAapXr54+/fRTderUyZK5WMePH9dll12m\nwMBAxcTEqFy5cmrXrp3puqGhoSpTpozCw8M1duxYtW7dusjzbjzCwsI0YcIEJSQkaO7cuerTp48q\nVaqk6dOnq3nz5qaejzVr1qhevXqKi4vTlVdeqfj4eEueh4iICIWEhKhRo0bavHmz7rzzTm+vnRlH\njhzR+vXrVa5cOX333XeqXr26rrrqKtN1mzVrppCQEDVs2FDHjh1Tt27dTC9smTx5st5++239+eef\nio6O1tatW9WqVSvTbfVo1aqV2rZtq9q1aysoKEgtW7a0pOe2atWqmjBhgvbs2aPY2Fj17NlTlStX\nNlXzt99+04MPPqibb75Z1atX94aCoKAg5eTkqFatWkWuXatWLX3wwQdKTExUfHy8evfubclEfs/z\nWq1aNd1888269tprTdecMmWKKlSooLJlyyo7O1vZ2dlq0KCB6bqStHv3biUnJyssLExLly6Vj4+P\n6bl5kj2/Gw0aNFBQUJAaNWqk77//XrfeequqVatmuq0JCQmqXr26srKytHDhQp06dcp0sO3fv78W\nL17s/S8+Pl6GYWjVqlVavHixunTpYqp+ZmamfvnlFyUlJSkxMVFXXnmlqdfE/v37lZqaqtTUVLnd\nbu88UCk31Fn1BS2vUrOPV0pKivbs2aO6deuqSpUqltXdsmWLZs+erWPHjumJJ57QX3/9ZeqFuXv3\nbmVlZWnHjh1q0KCBJd8K81q7dq1atWpl2be38zl06JAuv/xy08OudlmyZInatm2r5ORkVatWzTuc\nYsWE+EOHDmny5MnavXu3GjZsqL59+3qHbS5VK1as8L7ebrjhBktqfvbZZ3r88ce9l6dOnaqHH37Y\nVM1Ro0ZpwIABGj16tN544w2NGDFCgwcPNttUrx9++CHfZcMwdPvtt1tS+9SpU0pKSlL16tUVGBhY\npBr79+/Pd9nzO2z8/9W5Vi0Y8sg7RGqGZ8L02c+vj4+Pbr31VlO1o6KiNGzYMFM1CpKdna3Y2Fjt\n2LFDDRs2VGRkpKkg7nl/OX36tPc6z7+dHSvjrPbnn3+qbt263h59K8TFxVkSZs+2ZcsW7dq1Sw0b\nNjT9GTpx4kTv71pGRoa2bdumJk2a6M8//1SjRo30n//8x4om51Mqhho9Kw+vu+46HThwQHPmzFH3\n7t0tqT1r1iy98cYbGjlypK644grFxMSYCl5TpkzRsGHDdMUVV1jSvrPt27dP3333na655hp17tzZ\nVNfu+d5IPW8kkky9qf7666+67rrrFBMTc85j9O7du8h1JemXX35Rp06dzlm9aMUQUGBgoF555RX5\n+fkpOzvb9DDC9OnT1atXL73xxhvnhGUrVlhJUvv27dW+fXtLaiUnJys5OVnx8fHeLRWys7O1ceNG\n08GrZs2aOnTokJo2baqJEyda0dx8PIEoJydHGzZssGw1sWEY2rt3r06ePOkdIi7Kh01sbOwFvzA9\n++yzRW5jXqdOndL69euVnp4uyXxASktLk6QiB84LiYiI0O7duy1ZiXw2Pz8/S09MmTlzpnr16qXR\no0ef8+9Y1BXKs2bN0j333GP5+4MndO/fv99bNyQkREePHrU0eM2dO9fy4PXzzz+rcePGioiIUFJS\nkn755RdTn8nPPfec98/vv/++Ro0apcqVK3uH9e1QKoLXpk2bvEGrRo0a+vTTTy0LXjk5Od5vQT4+\nPqbfXBo3bqx58+Z5l4hb/U22R48euvfee7V582bFxMTI5XLpmWeeKVKtvH/X/fv3a8+ePWrXrp1W\nr16t2rVrm2qnZxitRYsW53yzN6tmzZp6++231axZM0nWfPP2+Pjjj/Xwww+rcuXK3mX5L7/8cpHr\nPfTQQ5KkN99805L2nW3FihWaPXu2/Pz8vMHTzBv2sWPHtGvXLmVmZnon+Pr4+Khfv36m29qnTx9J\n0p133qktW7aoTp06pmvmdeONN3r/3LlzZ7311luW1B0/frxycnJUs2ZN7+u3KB82eT8A7DRmzBjV\nrl07X3vN8AwH531+rfLbb79p+fLlKleunCWv37z++OMPzZkzJ98CJzO1PdsMWTl7x/O+NWrUKEsn\nei9cuFB33333ecO+VQFfkurXr6/Jkyfn2xLFbBD7+eefvUGratWq+vjjjy2b93fkyBHvNIFKlSrp\n2LFjltQ9W6kIXmdPULdqArEkVahQQVu3bpUk7dixw/RciKNHj+rYsWP5hhWsfKFLuRPAjx8/rvT0\ndFPDYHnfSEeOHKnXX39dZcqUUYcOHTRmzBhTbWzUqJEk6aqrrtKpU6eUnJys6tWrW9Ilb9UckPNJ\nT0/3/mKGhYV5v+0XledN791339Urr7zivf6///2vnn/+eVO1JWn27NmKioqybPPYiIgIRUREqGzZ\nsqb3Wzvbli1b8l1OSEhQmTJlVLNmTcsmgHtkZWUpJSXFklqHDh3SyJEjLanlYed+fNnZ2aZ7J89n\n3759WrBggTfIWLEP29tvv21F085rypQpev755xUeHm5pqDEMQ9u3b88X6IoaNjxzw4YPH25poLv7\n7rsl2R/2PdM88q7CNBu88n5B9yy4sFLehXp2KRXBKyIiQtOmTVObNm20Zs0aS+dNPf7444qJiVFG\nRoaWLl1q+s3P7hf6J598ooSEBN1www164YUXLFsunpWV5Q1FAQEBplcHemzdulVTpkxRvXr1tHv3\nbj3yyCOm//3s+ObtYRiG94QEK7YC2blzp3bu3Kl9+/bpxx9/9H7I7t6924LWSpdffrlloSvvbu3V\nq1c/Z/d2s2+oS5cuVUJCglq2bKkNGzZ450tt3bpVjzzyiOmNRD2bZ3r+Da2a33X55Zd736yt8t57\n76lTp05asGCBbr31VtNbSORVqVIlpaamWn6Sw6RJk9SjRw9vT5oVH4g//PBDvikObrfbsn+3kJAQ\nU4sUCmJVD2he1atX186dOy3/Uvn111+f95SPxo0be78cm3HfffdZ0Mr8wsPD9cMPP6hdu3ZatWqV\nJYsMPLp27arRo0frmmuu0aZNm3THHXdYVjuvUhG8HnjgAS1btkzLli1TvXr1LP3g3bZtW76hOrOT\nBSdNmlTgC71t27amv3m1bdvWkmGfswUEBOjQoUPesW+rPmS+/PJLDRw4UMHBwUpPT9fYsWM1ZMgQ\nUzXPtzu1VcMTPXr00IgRI1S/fn3t2rXL1CkGUu48k8DAQLlcLm+wdblclu2WfMUVV+ibb75R69at\nvR+GRR3a/ru9g8x+uGRnZ2vYsGEKCgpSZGSkJk2apBdffFHHjx/XW2+9ZTp49evXz5a5QgEBAerf\nv7+aNWvm/QZudp6iZz++lStXqlOnTnr33Xctam1ur+1//vOffFs0WHFCQFBQkCUrGfOya16eJF19\n9dVatmyZdzGSVZPg7egBPXjwoMaPH69y5cp5w5wV72lut1vHjh3zTiEpV66cwsLC9NVXX6lp06a6\n6667TNW38kQOj0ceeUSxsbH64IMPVK9ePfXt29dUvbxat26tOnXqaM+ePWrbtq2lC/XyKhXBy7O3\ni1XjvHnNnz9fLVu29F6eM2eOqQ+YGjVq6MyZM2rfvr1Wrlwpt9utZs2aafHixdq1a5fpIYD69evr\nk08+0e7du1W3bl316dPHkl6vPn366L333vMGpKeeesp0TSn3Fz/v5pNWLLL1vCHl5OQoLi5OBw4c\nMF3To0mTJho8eLAOHjyoXr16mX5u69Spozp16sjPz8+yCfB5HTx4UC6XS/Pnz/deV9ShbTu+veaV\nd2Kv5/gvKXe434q9ejwLW6x20003WdbD42HXfnyS8q1Glazbv6pRo0basmWL6e1g8rJrXp6UO3/M\n5XJp6dKl3uvMhgLJnh5Qs19GC7Jr1y71799fPj4+atKkid5880317t1b7dq104ABA0wHL88c2I8+\n+kj9+vXTL7/8YrrNAQEB6tGjh+k6BfH391f16tV1+vRpJSYmWr6aWCrhwcvOFWGLFi3S4sWLlZSU\n5O1BcbvdpofBNm/e7N0UskePHho5cqTuv/9+XXHFFXrjjTdM1ZZy90Jq2bKl+vXrp7Vr12ry5MmW\nDG/WrFlTI0eOtGwJukdISIj3PK/09HRLDzn39fVVq1at9MMPP1i22CI7O1vLli1TSkqKIiMjlZWV\nZcmQTUREhL799lvL5/T861//Ml3jfOw4O87Pz8+7BcjBgwe925WkpaVZstGwXQtbmjRpoiNHjni/\n1VtxckbPnj11+vRp3X333fr44491yy23mK7p+d09ffq05QtapNxFTitWrLBlIrxk7bw8SbZtU2FH\nD6gdZ9pKyvdayLsVhqcn3iw7TuSwelFEXlOmTNHWrVsVHh7ufV6snoMtlfDgVdCKMCsm13fp0kVd\nunTRiBEjLN09O+8eL1LuL5SU+yFgxTekw4cPq02bNpJyu00XLFhguqZk7WTfvFtI+Pv7a9CgQWre\nvLk2bNhgyRwGz8IFwzCUlJTkXTZvhc8//1wRERFatWqVTp06penTp+ebFF9Uds3psaOrX8pd3fnQ\nQw/piy++0P3332/JUUSPPPKIxo8fr/LlyystLc37hWHevHmWLPu3a2HLlClTlJCQoKSkJFWtWlUV\nKlQwPXR35MgR1a1bVyEhIYqKijpnPl1R2L2SzcqQ5eH5Um31vDzJvoOn7egBfffdd9WoUSOtWrVK\nbdq0sexYqssvv1yrVq3yDjV6FmPt3r3bks8jO07ksGtRhJS7wOfNN9+0dR9MqYQHL8+T88MPP+i2\n226TlPvt+P3339fAgQMteYxBgwZZenp7rVq1NHfuXHXs2FHLli3zLpnfsGGDJT0nZ4dOq/bHtTIY\n5N1CIicnR507d5aPj49lG7/m/WApV66cJasDPf766y/169dPixYtUtWqVS072seuOT12dPVL554d\nd/aeb0VRq1Ytvfnmm+f0qnq+YJll18KWbdu2adSoURo5cqQGDBigCRMmmK753Xff5ZsvZXaKg2T/\nSrbMzExNmzbN0mkOdm2zItnz5UGypwfUc6bt9u3b9cADD2jcuHGma0rSE088oZiYGM2bN0916tTx\nDkPv2rVLjz32mOn6jz32mMqVK6cePXro+++/t2T+sV2LIiRZOofwQkp08PI4c+aMJk2apE6dOmn6\n9One/YCsYPX5cX379lVsbKw++ugjNWzYUI888oik3L+DFS/Kpk2basqUKWrbtq3WrFljyfEwkrXB\nIG+b7NiZ2vPBYvWwqJT/vEe3223ZYeF2zemx6/BtO86OyxverF7BJtnXw2HlOaZ2TXHIy66tKqyc\n5uAZcj5fT59VG3La8eVBsqcH1K4zbT/88MPz9tjffPPNltT3HHBerlw5y+aI2rUoQspd8TtixAi1\nbNnSO0xs1R6QeZWK4BUZGam5c+cqOjpab7/9tmXnNEr/d3r7qFGj9Prrr+vTTz81Vc/f31933323\njh49mm+Preuuu85sUyXlzhtbsWKFVq5caekRMXYFgxo1ali+TPrAgQOaNGmSgoKClJGRoWeeecay\nCZK33Xabxo0bp6NHj+q9996z7JfywQcftHxOj2Tf4dsPP/yw/P39dd9993l7DMyycwWbZF8PR9Om\nTZWSkqI2bdpo5MiRpuYp2jXFIS+7hrWtnObw559/qlq1auddSWtl8LLj4Gk7ekC7deumEydOqGvX\nrho2bJj3eTbLc/C6Xcee/fTTT/ruu+/y7YZvdkjarkURklS3bl1Lz04uSKkIXl9//bWSkpIUFRWl\nyZMnq1evXpYtG7f69Harz36Uzp031qpVK+8wxenTpy35NmBXMLBjmfTUqVP1/PPPq2rVqkpJSdFn\nn3123i0miqJdu3aqV6+e9u7da+m5oJ7Xq6+vr2VvIpL06KOPKjg42NKufil381gp98PLqsmndq5g\nk+zr4YiMjJQkValSRREREZYERrtCl2TfsLaV0xw8BynbuZLWji8PkrU9oB5XX321pNyhMLObV+d1\n9OhRvfzyy/kOYrdyrt7ixYv17rvvWjYyINm3KEKSOnXqJLfb7d081ar9Ks9WKoKXv7+/XnzxRUnS\nSy+9pA8++ECvvvqqJbWtPj/O6rMfpfzzILKzs5WQkKDatWtr7969qlOnjqKjo8022xsMPJN9rWLH\nMukzZ86oatWqknI/DK2YY5FXUlKS9zVh1bJxu3rpPPMGrerqHzt2rHeyc15W7QXlYfUKNsnaHo4L\nTXbfv39/kXtlLvQFwaoPRLt6r+2Y5pB330MPq/Y9tOPLg2RtD6jHpEmTvH+2cv9HKz4bLiQkJMTS\n0CXZN2VAsn5qUUFKRfDq3r27UlNTdfDgQTVs2NDS08Tznh/nOb3dDKvPfpTyd7N+8sknevTRR1Wv\nXj0lJCTop59+Ml1fsuc4ECk3KC5atMi7PYPL5TK9yMDzjcVz7INVCwyk3INwy5Ytq3Xr1qlp06Za\nsGCBnn76adN1reyl+7ufM/MBfvToUZUtW1bdunXz7hht1fNr5wo2ydoeDrs2k7VjZeDZ7NiqQrJn\nmoPV+x7a+bvhYUcPqOd5uOGGG7RixQpL939cuXKltm/froYNG1q+l+A999yj6OjofJv1mt2Dy64p\nA5L1U4sKUiqC15o1a7Rq1Sr99ddfevTRR7Vt2zbTG7955D1D76qrrjJ9hp7VZz+eLTEx0ds7VadO\nHSUlJVlS13MciGc1iVXLbe3YnuHOO+/U6NGjdfXVV2vTpk2WfoDv2rVLgwYN0qZNm1S7dm0lJiZa\nUtfKXrq8Hx5Hjx61dK7UiBEjFB8fr/nz58vPz0933XWXZcP6I0aMyPft+OwhdLOs7OGwezNZO23Y\nsEH33HOP5b3X3377re69917vh/fcuXMt2fncyn0PnQi2Z/eG7t271/SO/nbt/zhr1iydOHFC119/\nvfcz9N577zXV1ry++OILtW7d2tJjfeyaMiBZP7WoIKUieC1cuFADBw5UdHS0GjdurJiYGNO/8Had\noWf12Y9nc7vdcrvdcrlccrvdlvVG2HEciGTP9gytWrVS7dq1tWfPHrVr187SYx/O7kGzYkd1yb5e\nuvfee0/Dhw+3pJbHlVdeqSuvvFKJiYmaN2+ejh8/rq5du6pZs2am6o4cOTJfEBg/frzpIQQnejiO\nHDmi6dOn68iRI3r00UeVk5PjyATdovrjjz8UGRlp2RBQamqqTpw4ofXr13sXCWVlZWn58uWm34ft\n3jiekWkAABsESURBVPfQMIx8hyFbMR/W0xvqdrv1+++/q3r16qbfO+16HjZu3Oh9f2jUqJGioqIs\nDV4ul0tdu3a1rJ5k36IIyfqpRQUpFcHLEzQ8rBi+s+sMveDg4HxnP1qtY8eOGj9+vK677jqtW7dO\n119/vSV17TgORLJve4YdO3Zo+/btysrKsjR4tWnTRp9++qnS0tI0efJky1aj2tVL16RJE61Zsybf\nbu1WLb0ODw9Xu3bt9M0332j16tVFDl6///67Nm3apIMHD3o3183OzrZk7pETPRyff/65+vbtq4kT\nJyosLExvv/22pT1JVrv88ss1ePDgfL/LZrbg2bZtm9auXasjR44oNjZWUu7rzIpNb+3c93DevHn6\n4YcfVKlSJe/nhxX/bnl7Q++991699957pmva9Tx4Toco6LJZV199tX799VfvLv6S+XD7yCOP2LIo\nQrJ+alFBSkXwqlatmnfce/Xq1d4hGzPsOkPPrrlSHl26dFHNmjW1Y8cO3XrrrZbt/2PXcSB5t2cY\nP368JdszfPPNN0pPT9f111+v1atXKzk52bKhocaNG6tOnTqqWrWqGjZsaNnz6+vrq2eeecbyXrpt\n27YpPj5eP/74o/c6sx8ubrdbK1eu1KJFi9SoUSO9/PLLuuyyy4pcr1q1avL19dXmzZvVsmVLGYYh\nl8tly3Devn37dODAAbVq1Uoul8uSna8zMzO9y/GtOBfVbjfddJOk/5ukbXbaQKtWrdSqVSvvEW5W\nsnPfw19++UXjx4+3fPJ3Xr6+vpYsErHreahYsaLWrl2r1q1ba/369ZZv4bJhwwZt2rQp33Cg2fef\nefPm6fHHH7dsUUTekyzy/k6EhITkOz/WSqUieHlelEFBQUpOTrZk+C4+Pl5VqlRR+/btlZ2drU8+\n+USZmZnq27evqRenZ65UzZo1LTtW4uxu6Dp16qh27dre26zo4bC65+Do0aMKDg72bs+wbds2nTx5\n0pLhzN9///2c7nOrPsQ9By1b3fM3d+5cDRs2zNLeOUkaPHiwpfXmz5+v1atXq3Xr1nr99dcteVOq\nXLmyKleurFtuucXy5zWvH374QQcOHNDOnTtVuXJlrV692pLNln18fHTixAlJuZv2Wnk4sh0qVqyY\n78vp6tWrLanbtGlTHT9+XKmpqfr888918803q127dqZq+vv7n3foy4qe5ooVK9oSusaOHSspdxjz\n4MGD3q0gzLDreXjssccUExOj2bNnq06dOpZPfbFj64eUlBRlZGRYFojOd4RWXpzVWAA7Tiv/8ssv\n9fLLL0vKfcO+7rrrFBoaqs8++8zUVhV2zJX6u2M1rOg+t3q3608++UR9+vRR9erVtW/fPiUmJiok\nJERTpkzxHltRVGf3Ylh5npddBy3Xr19fkydP9taVrNkoMiMjQ99++60OHz6snj17SpKpHuGYmBjV\nrFlTa9as0Zo1a/LdZjacL1++3Lt/kx3WrVunwYMHa9iwYWrQoIE+//xzS+r27t1bY8eO1YEDBzRu\n3DhTK8yc4NmtvHz58vrtt9+0ZMkStW3b1nTdL7/8UgMGDNDPP/+sF198UW+//XaRgpcT8/Kk3OG7\nDz74wNv7KVnzO+c5ENvHx0dBQUFF3k7CiechKChITz31lHJyciwfZpRyPzd+/vnnfCM8Zg8M9/X1\n1SuvvKIGDRp4Oy/MjBrlPV0hLi7Osg16L6REBy879xTydDVKuZt8ek6CN3s4qR1zpZyYT2L1bten\nTp1S9erVJeX2UD3xxBOSpKFDh5ptqpo0aaJ169apVatWWr9+va688krTNT2OHTtm+UHL2dnZ3iGq\nXbv+X3t3HhVl9cYB/DszMCAoWjicVDBBIUTS3MDUjBZzJVMrUgPN5ainyKXQyIw4BiUUqR3Kk0c5\nKkbuhVJZqLgQhicUxA0RIgTHBUXZBpkZfn943vc3M4go772zyPP5C0a873VkZp733uc+z0VUVFTA\n1dWVyRvA+vXrMWrUKKSkpMDR0RHfffcdPv7441aPt3XrVslzao6Hhwfi4uLEXDHW7TpMiyGyWpnK\nyclBdHQ0qqqqxBYp1mzWrFn49ttvMXLkSOzbt49ZzUO5XA4nJycoFAp06tSp1Svt5sjLA+7m8Xbu\n3BnFxcXiYyxec25ubrhx4wZqampQX1+PmzdvturmzBzPw3///YeUlBRcvXoV8+bNQ01NjdHNn1Tf\nfPMNhg4dCh8fH2Y7PDNmzDD6nmVD619++YUCr5aY1hQSAjAW/xE6nQ61tbWoqKgQSz40Njairq5O\n0ri8cqUEOp0Oe/bsEeuyTJgwgcmKD+tq10K5hKqqKqM36NaWEDC9O8zIyMC2bdtQV1eHDh06SE7A\nFJa2e/ToId69AcCIESMkjZueng6ZTGa0FZqWliZpTEOVlZXw8fEBcLeUCesSDSyxbBt1L76+vti1\naxc0Gg1SU1Px1FNPMRlXOCVozUFXfX29mLuiUqkwfvx47NixQ1zVZ8Hf3x8RERGYPXs2CgsLxRsr\nqXjk5QFASEgIk3FMJSUl4cKFC+jWrZv4WST15sz0davX65nkE27ZsgULFixAfHw8PD09ER0dzTTw\nUigUzA4KpaSkYMqUKXBzcxNvrFnjtfNgyqYDL541hSZNmoSoqCi4uLiIVfGPHTuGgIAASePyvovZ\nvHkzXF1dMWfOHGRmZmLjxo1M9u1ZV7sODAxEbGwsdDqdeAeTm5vb6m073s/r9u3bMXHiRGRmZoq5\nFmq1Gnv37pW0NZqRkdFkxXLMmDGIjo5mcgxbp9OJb9p37tzhmkgsVVBQEDQajdggmcXpZENvvfUW\nDh8+DG9vbzz22GNioUupTE8JsthOYe1e6QgKhQKrV68GwGbVPCQkRAxm9Ho9k/diHnl5u3btwqRJ\nk+65lcfifeT8+fMtpn88LGE8nU6HkpISdO/enUnV+YaGBjFXys7Ojll5HIG7u7v4epaqoKBA/PrX\nX3/lEngZ7jwIKPC6B141hZ555pkmkX9gYKDkuy3WOTemiouLxUBm/PjxTJIbtVqtUbXr2NhYTJw4\nUdKYwcHBGDBgAJydncUVRU9PTyarELdv38bRo0eN8gqk5gAWFxfDxcUF9vb2Ri9EqVujCoWiyZsd\ny5y0119/HV9++SXUajXi4uKYHPHnpaCgAElJSfDy8kJRURFmzJjBbFUKuPt78Pzzz2Pw4MFMe7AJ\npwQNr2NtoqKixFIdAgcHB/j5+cHf31/S2N9//71YImffvn0YNWoU5HI5YmJisGzZMklj88jLE7av\ned2sqVQqaLVapjc5hoFxRUUFtm/fzmRcBwcHscj2lStXmJ/gKywsxIcffgh3d3cuOzysCTsPvHLe\nBDYfeAlY1RS6HxYfiKxzbkyxftMXtsJeeuklAHd7b40ePVos4CdFt27djL6XWpdHkJCQgMGDBzMt\nYilsY5tuGUgtdNpchXrDoo5S+Pv7w8vLC2q1Gl27dmUa1LH2008/ITIyEi4uLqiqqsKqVauYnMos\nKipCSkoKOnfujKCgIGzatAlyuRyjR49mUueORU9Ccxg4cKDR93V1ddi3bx8KCwvx2muvtXpcw3IJ\nx44dEwMbFsEtj7y81NRU8aaX1ZaVYVArl8sRGRkJf39/8fXG4vSswNXVlVlHkpkzZ2LDhg0oLy9H\ncnJyk/wpqWJjY636PccU75w3gc0HXqxrCvHGO+fmySefRFpamtgCwsPDQ9J499sKGzt2rKSxeWJd\nLVn4ADAt9yA1QBowYAAOHz5slCt25MgRZsvb4eHhWLBggZg/FR0dbbXFPRsbG8Xgu0OHDtDr9UzG\n3bhxI6ZPn47KykqsWbMGcXFxUCqV+OyzzyQFXuZoaM3SvQ709O/fH8uWLZMUePHEIy+Px5bVgAED\njG56hXw6FnXSABjVwSorK5McgAo5q8ePH4eXl5e4LczqNSfQ6/X4448/mPTivXjxoviaKy8vN3r9\nsXq98c55E9h04MWjphBvvHNuQkNDjQrtST3aznsrjAdvb2+cOXMGvXv3ZrYCOGDAAGRkZCAoKEh8\n7PDhw01WER5WcHAwvvrqK5SUlMDLywsXL17EpUuXmDV6d3Jyws8//4yAgADJBwF4k8lkqK6uRvv2\n7VFTU8P090z4YNm5c6d4vF9qPos1BlcPSy6XM8+lY4lXXh5rhque69evN8r73LRpk+RT7Ib/R337\n9pW8gtZczqpQnJQVlr14N23axGxezeGd8yaw6cCLV00h06abhiUrpB5x551zY2dnx3RM3lthPHTp\n0gWrV682KnQr9UMyODgYX3/9NUpLS8UAqaysTHJDbwcHB0RGRiI7OxuXL1+Gj48PQkNDmQWMTk5O\nWLx4MZKTk1FSUsL8jpalN998EzExMWKOF6t6WIYBnOFKgTXmYpmbWq2WvF3e3EoEi+0wXnl5PFy+\nfBmXL1/G2bNnxUbZWq0WJ0+elPy7LNzw1dbWQqvVSl7x4pWzaopHL16eeOe8CWw68OJVU8jw7qK0\ntFRs45KVlSVWhG8tX19fREREiDk3rN78edU0470VxsNvv/2GxMREpquJSqUSS5cuxfHjx3H58mX4\n+voyC5DkcjmGDBnCYJZN2dnZQS6XIywsDAcPHmxyU2FNfH19ERUVhfLycoSGhjJbieEZGNgSoaK6\nQKPR4NatWwgPD5c0Lo+VCJ55eby2rG7evImLFy+irq5OPBUnk8kktfTh9Tzwylk1xasXLy+GOW+b\nN29mnvMmsO5nwUIMt5NiYmKwdOlSODg4YMSIEYiPj5c0dkxMDKKiosStj7i4OMmNtwF+Nc14b4Xx\n8MQTT3DZDpXL5cyaYpuL4ersCy+8wPWkTmv9999/SE5OhoODA9555x1mJWEE5tiisAWmJS6USiU6\nduxolSt/vPLyAH6/D35+fvDz80O7du3EgttS8XoeeOWsmjLsxbtq1SqmBZF5UKlUWLp0KffrUODV\ngoaGBrHAp1KpbPVyd15eHnJzc6FWq8UTMFqtVnI9LAGvmma8t8J4sLOzQ2RkJPz8/CCXy62yrpK5\npKWlGbWoSk9Pt7pcrw0bNiAsLAwVFRVITk7G+++/b+kpPZJY9wHljUdeHk9CvaquXbuKW40CKTsE\nPJ4HXjmrpoYOHYqePXvi33//haenp9X/DlZUVODQoUNMWxzdCwVeLVAqlbh27RpUKhWuX7/e6r31\nLl26QKFQ4NSpUxg4cCAaGxshl8uZNW8G+NU047kVxsNLL73ErD2FrUpPT8f+/fuNtlL0ej18fX0t\nPLOmGhsbxZNVe/bssfR0iBWwxby806dPo0uXLkbFNwWtDbx4PQ+8clYNaTQapKeniwEpj9OBrCUk\nJOC5554TT8/y+n2TNbLe1H3ElJaWYu3atWjfvj2qq6sxd+5cdO/evdXj5efnSy5Y+CByc3OxY8cO\nuLu7Y+7cudyvZ214tRmxNZ9//jk++eQTS0/jvgxLXFhzuQtiPmFhYWKdv/LycrH9UHl5OTZu3GjJ\nqT20EydOoH///q36uzyfB71eL+asdu3aFYMHD2YWaNTU1CA+Ph4BAQHo1asXCgsLkZ2djSVLllh1\n9QFzvf9Q4PWAhGPuUvHo1i4wrWk2duxYq65pxothm5FZs2YxaTNC+GnuwwV4NEo2kLYtPj6eWSNy\nW/Hjjz/Cy8vLaKckKysL//77r1i81hqlpKRg4MCBYq1NXmirsQWsW/zw6NYO2GZNM154tBmxNVu2\nbMG0adPw0UcfNfkds7ZghpLfCXm0nD59GlOnTjV67Nlnn8XevXstNKPmmRZCzszMhLOzM9cWRxR4\ntYB1ix+W3doN8appZot4tBmxNcKbHutmvYQQ0pLmTk9b46lqw8/H69evo3PnzuL3hu2wWKLAqwWs\nW/yw7NZuiFdNM1vEo82IrRFWuVasWIHAwEAEBASIzcgJIew110JKrVabeSaWZ0uBl6HExESjHK/1\n69fftzVYa1Hg1QLWLX5srVu7LZoyZQoOHTpk9W1GzCE8PBwnTpxAUlIS6uvr0bdvX6vusUmIraL3\n8f8zLFJryFqLFmdlZSErKwulpaVioWGtVovq6mou16Pk+hbk5+dj586dUKvV6NatGyZOnGjUl+th\n6fX6NnvCzlyKioqMapht3boVISEhFpyRZWm1WuTk5ODYsWOor69vc4m+hBByP7W1taiursbq1aux\ncOFCsdzT448/zuXzmgKvFmi1Wty5c8eoxY9QULU1dDod9uzZg4KCAnh7e2PChAkUiDH29ddfo1+/\nfhg2bBgSExPh4+PTZle9EhMTAQD9+vXDwIED0a5dOwvPiBBCrNOlS5fg7u7OfYGEPvFbEBMTAycn\nJ3h5ecHR0RGrV6+WNN7mzZuhUCgwZ84c2Nvb21xNGlvwwQcf4Pr161i4cCFGjx7dZoMuAOjevTs0\nGg2Ki4tRVlZm6ekQQojV0uv1WLlyJSIiInDhwgWcPHmSy3Uox6sZvFr8FBcXi403x48fj+joaKlT\nJSby8/Nx9uxZjB49Gvv374eXl1ebLa8RHBwM4O7pnG3btuHs2bPiKhghhJD/27JlCxYsWID4+Hh4\nenoiOjqaS8V9CryawavFjzW3vHhUpKWlibXMCgsLERcXh88++8zS07KIkydPIicnB8XFxejRowfm\nz59v6SkRQohVamhoEG/S7ezsuPUGpcCrGSqVCiqVCmFhYfDz82M27pNPPom0tDQMGzYMf/31Fzw8\nPJiNTe5asmSJGOD26tULixcvtvCMzO/mzZtwdnZGXl4ehg0bhp49e6Kurg69e/e29NQIIcQqOTg4\niCcvr1y5wm2nhJLrm/H3338jMDBQ3GYUSG3xo9VqkZqaigsXLsDb2xuvvvqq5BIVxJhwHFjQ2NjI\ntPmrLVi5ciVCQ0PRtWtXZGdn48KFC3BxccHVq1cxa9YsS0+PEEKszrVr17BhwwYUFRXB29sbM2bM\nMCqoygp94jdD6HFo2lVe6lahnZ0dJk2aJGkMcn9vv/02ZDIZdDodcnJyxL6YbYlGoxF7Hubl5WH2\n7NkA0Ga3XAkhpCUqlQpLly7lfh0KvJohVKuXUrPLUEJCAmQyGUwXGGUyGRYtWsTkGuQuNzc38eux\nY8ciJibGgrOxjIaGBgBAVVWVUfkTqZ0XCCHkUfP777/f83GZTIZRo0Yxvx4FXi3Iz8/Hzz//bLRq\n0poKxTdu3EC7du0QHByMLl26iAEYJduzJwQXjY2NKCsrw82bNy08I/MLDAxEbGwsdDqdeIo2NzcX\n7u7ulp0YIYRYGUdHxyaP5eXl4dy5c1wCL8rxakFERATCw8ONWvy01tmzZ7F3717Y2dlhwoQJRtXV\nCTuGJTqcnJwwbtw4pgckbEVZWRmcnZ3FHo23b9+GUqm855sMIYSQu3bu3ImCggK899576NChA/Px\nKfBqwYoVK7B8+XKmY166dAl79uxBZWUlxo0bh759+zIdnxg7ceIE+vfvb+lpEEIIsWK1tbVITExE\njx498Prrr3PbkaLK9S3o168fDh8+jLq6Omg0GiY5Mu7u7hg6dChqa2uRlZXFYJbkftLT0y09BUII\nIVaspKQEMTExGDlyJN544w2uaUCU49WCf/75B3K5HAcPHhQfi4qKatVYer0emZmZSE9Ph4+PDxYv\nXiyeniSEEEKI+R06dAgZGRlYtGgRl/IRpmir0Uz27t2LrKwsBAQEYOTIkW22hY0lxMfHIyIiwtLT\nIIQQYoVCQkLQvXv3e9bUbM1hupZQ4NUM08Kpjo6O6N27N/z9/Vs1XkhICDw8PO7ZgoDHf2xbFBkZ\nec/H1Wo1kpKSzDwbQgghpCkKvJpx+vRpoz3euro6ZGRkoGfPnnjttdcsODNCCCGE2CoKvB6CXq/H\nsmXLaIWKEEIIIa1CpxofglwupxpIhBBCCGk1CrweglqtbtLyhxBCCCHkQVE5iWYkJCQYfa/RaHDr\n1i2Eh4dbaEaEEEIIsXWU49WMq1evGn2vVCrRsWNH6q1ICCGEkFajwIsQQgghxEwox4sQQgghxEwo\n8CKEEEIIMRMKvAghhBBCzIQCL0IIIYQQM6FyEoQQq3f16lXs3r0bly5dgkKhgEajQZ8+fTB58mRq\nOE8IsSl0qpEQYtUKCgqQmJiI0NBQDBo0CACg1Wqxc+dOdOvWDcOHD+d27TNnzsDJyQk9evTgdg1C\nSNtCgRchxGrpdDosXLgQ8+bNQ58+fcx+/e3bt0OlUiEoKMjs1yaEPJpoq5EQYrXOnz+PTp063Tfo\nqqurQ0pKCkpKSiCTydCuXTtMnToVHh4eAIB3330XiYmJ4s+npqaivr4eb7zxBrZu3Yo7d+7gypUr\nqKqqQkNDA+bMmQNPT0+sXbsWp06dglKpxKFDhzB//nxs374dbm5uyMvLg0qlQmlpKaZPnw5/f38A\nQE5ODn755RdER0fzfWIIITaLAi9CiNW6ceMG3Nzc7vsza9euhbe3N2bOnAkAKC4uRnx8PGJjY9G+\nffsmP2/YfUIulyM7OxsxMTFwcXHBiRMnkJycjOXLl2PevHlioPX888+Lf/fcuXP49NNPYW9vj/37\n9yM9PV0MvA4cOIAxY8aw+ucTQh5BdKqREGK1XF1dm7TvMlRfX49z585h/Pjx4mOenp54+umnkZ2d\n/UDXGDFiBFxcXAAAffr0aXI902yMoKAg2NvbAwCGDx+OM2fO4Pbt27h16xaKi4sREBDwQNclhLRN\ntOJFCLFaPj4+qKysRH5+vriq9CD0ej3k8rv3lXK5HDqdDgqFAgBQW1sr/hkAODo6il8rlUro9fr7\nji0EXQDg4OCAESNG4ODBg5DJZHjxxReNxiaEEFP0DkEIsVoKhQLh4eH44YcfkJOTY/Rnf/75J9at\nWwc/Pz+kpqaKjxcVFeHMmTMYPHgwAMDNzQ35+fkAgMrKShw9evSBm93b29tDo9Hc92deeeUVHDhw\nAEeOHMHLL7/8MP88QkgbRCtehBCr5uPjg2XLlmHXrl3YvXs37Ozs0NDQgKeeegozZ86EXC5HSkoK\noqKixOT6iIgIODs7AwCmTZuGdevWYdeuXejUqROGDBkCnU4njm8ahBl+P2jQICQkJCA3NxfTp0+/\n58+7ubnB3d0dDg4O6NixI6+ngRDyiKByEoQQItEXX3yByZMnw8fHx9JTIYRYOdpqJIQQCYqKilBd\nXU1BFyHkgdBWIyGEtNKaNWtQU1OD+fPnW3oqhBAbQVuNhBBCCCFmQluNhBBCCCFmQoEXIYQQQoiZ\nUOBFCCGEEGImFHgRQgghhJgJBV6EEEIIIWbyP1hm6Phkd1IuAAAAAElFTkSuQmCC\n", "text": [ "" ] }, { "html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
HomicidesGun HomicidesGun Data Source
Country
Mexico 16.9 10.0 UNODC 2011[4]
United States 4.2 3.7 OAS 2012[5][6]
Montenegro 3.5 2.1 WHO 2012[10]
Moldova 7.5 1.0 WHO 2012[10]
Canada 1.6 0.8 Krug 1998[13]
Serbia 1.2 0.6 WHO 2012[10]
Luxembourg 2.5 0.6 WHO 2012[10]
Greece 1.5 0.6 Krug 1998[13]
Croatia 1.4 0.6 WHO 2012[10]
Switzerland 0.7 0.5 OAS 2011[1]
Malta 1.0 0.5 WHO 2012[10]
Portugal 1.2 0.5 WHO 2012[10]
Belarus 4.9 0.4 UNODC 2002[7]
Ireland 1.2 0.4 WHO 2012[10]
Italy 0.9 0.4 WHO 2012[10]
Ukraine 5.2 0.3 UNODC 2000[11]
Estonia 5.2 0.3 WHO 2012[10]
Belgium 1.7 0.3 WHO 2012[10]
Finland 2.2 0.3 WHO 2012[10]
Lithuania 6.6 0.2 WHO 2012[10]
Bulgaria 2.0 0.2 WHO 2012[10]
Georgia 4.3 0.2 WHO 2012[10]
Denmark 0.9 0.2 WHO 2012[10]
France 1.1 0.2 WHO 2012[10]
Netherlands 1.1 0.2 WHO 2012[10]
Sweden 1.0 0.2 WHO 2012[10]
Slovakia 1.5 0.2 WHO 2012[10]
Austria 0.6 0.2 WHO 2012[10]
Latvia 3.1 0.2 WHO 2012[10]
Spain 0.8 0.1 WHO 2012[10]
Hungary 1.3 0.1 WHO 2012[10]
Czech Republic 1.7 0.1 WHO 2012[10]
Germany 0.8 0.1 WHO 2012[10]
Slovenia 0.7 0.1 WHO 2012[10]
Romania 2.0 0.0 WHO 2012[10]
United Kingdom 1.2 0.0 WHO2012 [10]
Norway 0.6 0.0 WHO 2012[10]
Poland 1.1 0.0 WHO 2012[10]
\n", "
" ], "output_type": "display_data", "text": [ " Homicides Gun Homicides Gun Data Source\n", "Country \n", "Mexico 16.9 10.0 UNODC 2011[4]\n", "United States 4.2 3.7 OAS 2012[5][6]\n", "Montenegro 3.5 2.1 WHO 2012[10]\n", "Moldova 7.5 1.0 WHO 2012[10]\n", "Canada 1.6 0.8 Krug 1998[13]\n", "Serbia 1.2 0.6 WHO 2012[10]\n", "Luxembourg 2.5 0.6 WHO 2012[10]\n", "Greece 1.5 0.6 Krug 1998[13]\n", "Croatia 1.4 0.6 WHO 2012[10]\n", "Switzerland 0.7 0.5 OAS 2011[1]\n", "Malta 1.0 0.5 WHO 2012[10]\n", "Portugal 1.2 0.5 WHO 2012[10]\n", "Belarus 4.9 0.4 UNODC 2002[7]\n", "Ireland 1.2 0.4 WHO 2012[10]\n", "Italy 0.9 0.4 WHO 2012[10]\n", "Ukraine 5.2 0.3 UNODC 2000[11]\n", "Estonia 5.2 0.3 WHO 2012[10]\n", "Belgium 1.7 0.3 WHO 2012[10]\n", "Finland 2.2 0.3 WHO 2012[10]\n", "Lithuania 6.6 0.2 WHO 2012[10]\n", "Bulgaria 2.0 0.2 WHO 2012[10]\n", "Georgia 4.3 0.2 WHO 2012[10]\n", "Denmark 0.9 0.2 WHO 2012[10]\n", "France 1.1 0.2 WHO 2012[10]\n", "Netherlands 1.1 0.2 WHO 2012[10]\n", "Sweden 1.0 0.2 WHO 2012[10]\n", "Slovakia 1.5 0.2 WHO 2012[10]\n", "Austria 0.6 0.2 WHO 2012[10]\n", "Latvia 3.1 0.2 WHO 2012[10]\n", "Spain 0.8 0.1 WHO 2012[10]\n", "Hungary 1.3 0.1 WHO 2012[10]\n", "Czech Republic 1.7 0.1 WHO 2012[10]\n", "Germany 0.8 0.1 WHO 2012[10]\n", "Slovenia 0.7 0.1 WHO 2012[10]\n", "Romania 2.0 0.0 WHO 2012[10]\n", "United Kingdom 1.2 0.0 WHO2012 [10]\n", "Norway 0.6 0.0 WHO 2012[10]\n", "Poland 1.1 0.0 WHO 2012[10]" ] } ], "prompt_number": 13 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's just compare US, Canada, and UK:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "select = data.ix[['United States', 'Canada', 'United Kingdom']]\n", "plot_percapita(select)" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "" ], "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAHBCAYAAAAhAWw4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtUVOXi//HP3IAQBoq8FaJQYUeNFIwyi/KyTlnhpWMt\nCSn1aPebXY6ZGRaimZXVKbuaKZpdTA37ZpZQX7GbtyzvZUcTS0LrCKKAwMzvD3/O10lQNIdnYN6v\ntVyx9x5mf0ZZ9nE/z362xe12uwUAAIAGZTUdAAAAIBBRwgAAAAyghAEAABhACQMAADCAEgYAAGAA\nJQwAAMAAe0OdqLKyUhMmTNDZZ5+tjIwMr2Pjxo2T2+2W1XqwE2ZkZCguLq6hogEAADS4Biths2bN\nUo8ePVRYWHjEMYvFotGjRys4OLih4gAAABjVICVs0aJF6tKli0JCQmotYTabTU8++aTKysrUpUsX\nDRo0qM73ysvL82VUAACAk6pXr1617vd5Cdu4caNKS0vVp08frV+/vtbXjBo1Sg6HQy6XS1OnTtXK\nlSvVtWvXOt8zMTHRV3ED0sKFC5Wammo6BlAv/LyiMeHnFatXr67zmM9L2Jo1a7R9+3ZNnjxZe/fu\nVUlJiSIiItS3b1/PaxwOhyTJarWqW7du2rp161FLGAAAQGPn8xKWlpbm+XrDhg1atWqVVwHbs2eP\nPvnkE11//fVyuVxavny5unfv7utYAAAARjXYxPxDLBaLJGn27NlKTU1VZGSkampq9PDDD8tutys5\nOVkJCQkNHQsAAKBBNWgJ69Chgzp06CBJSk9P9+xPS0vzumIGAADQ1LFYKxQfH286AlBv/LyiMeHn\nFUfT4MOR8D/t27c3HQGoN35e4Wtut1vFxcWqqanxTKE5UU6nUzt37jxJyeBP3G63pIN/xmFhYSf0\nHpQwAAAOU1xcrPDwcIWGhpqOAj/ndrv1xx9/qLKyUlFRUcf9/QxHAgBwmJqaGgoY6sVisSgqKkqV\nlZUn9P2UMAAADvNXhyAReE70Z4YSBgAAYABzwgAAOIZt26zascP31y2io11q187l8/PAP1DCAAA4\nhh07rOrbN9zn58nN3XvcJaywsFDPPPOMNm3aJIfDob179yomJkb333+/TxY/b9OmjQoLC+u9/6+a\nO3eumjVrpj59+tT5moqKCv3rX//Ss88+K6u19rKcmpqqqVOnqk2bNic944mihAEA0EitXr1at912\nmzIzMzVlyhTP/nnz5ikvL88nJayu+U++mks3cODAY74mJCREzz///FFfY7FY/G6+HyUMAIBGqKam\nRrfccoumTJmiSy65xOvYtddeaygVjgclDACARmj58uWKioo6ooDV5s9DcR988IE+/fRTvfDCC5o1\na5a+/vprVVVVqaioSCUlJcrMzFSPHj1OONvevXs1fvx4rV+/XhaLRWFhYcrMzNS5554rl8ultm3b\n6sEHH9TSpUv1yy+/6K677lJpaan+53/+R2VlZerXr5/uvfdeSdKkSZMUExOjtLQ0ud1uvfjii/rw\nww8lScHBwRo/frzOO+88nX/++fruu+8kSd9//73Gjx+v8vJyHThwQL1795bb7fYssLpz505lZmZq\n165dslqtat++vTIzMxUcHKzPPvtMTz31lCTJ4XDoueeeU9u2bU/49+JoKGEAADRCv/zyyxHloLi4\nWMOHD5ck/frrr8rPz5fT6TxiKO7wr61WqxYtWqRPP/1UcXFx2rRpk2688UYtX7681vOWl5erb9++\nte4/5O6779YFF1ygSZMmSTpYigYPHqwlS5YoMjJS+/fvV0REhObOnavS0lIlJydryJAhWrhwoaqq\nqpSSkqLrrrtOZ555ptc5XnnlFa1Zs0YLFy6Uw+HQ5s2bPZ/l0H+Lioo0YsQI5eTkeB4b9frrr+vr\nr7+WxWKR2+3WPffcowkTJujss8+WJOXk5Gjy5Ml65JFHlJWVpZdfflnx8fH64osvFBISUo8/jRND\nCQMAoBGKjo7Wzz//7LWvRYsWys3NlSR17txZNTU19XqvK6+8UnFxcZKkc889V/v27avztaeccorn\nHIeLiYmRJO3fv1/ffPONpk+f7jmWkJCglJQUffjhhxo8eLBsNpsyMjIkHXzsT1xcnPr37y/p4NWn\n888/X4WFhZ4SdqhgzZs3T//+97/lcDgk1f4YswULFqhPnz5ez+0cPny4Zs2aJUnasmWLVq9erfvu\nu89zvLq62rPi/d///nfdeeed6tu3ry677DK1bNnyqL93fwUlDACARuiCCy7QH3/8oYKCAl166aVH\nfa3VavVa1b2kpMTr+J+ffXio5JxMLpfLc+diSEiI112MdrvdK4PdbpfLdWJLdVitVs+w4+EO39e6\ndetai6QkPfTQQ7rhhhu0dOlSjRw5UjfccIOGDRt2QlmOmdUn7woAAHzKZrPppZde0n333afFixd7\nHSssLPQaHoyJidGyZcskSfv27dOMGTN8dqdgaGioLr74Yr3wwguefd99952++OILXX311Sf0nocK\n1IABA/T000+rqqpKkrRp0yZt2rTJ67X9+/fX4sWLtXnzZs++1157TRs2bJAknXPOOQoNDdWbb77p\nOf7qq6/qk08+kSTNmDFDzZs31+DBgzVixAh9++23J5S5PrgSBgDAMURHu5Sbu7dBznM8kpKS9P77\n7+upp57SlClTFBQUJOnglaZx48YpIiJCknT//ffr9ttv1zvvvKPIyEhdddVV+vHHHyXVvnTD0Qpa\nfZaoeO655zR+/HhdffXVslqtCg8P16xZszx5jrcAHnr9rbfeqqlTp6pfv36yWq1yOBx6/PHHvV7T\nokULTZs2TWPHjvWamN+tWzfP+82aNUtjxozRO++8o5qaGnXs2FHp6emSDq451rt3b0VGRsrhcOiZ\nZ545rqzH9bnctV2z82N5eXlKTEw0HQMA0ETt3LlTrVu3Nh0DjcjRfmZWr16tXr161XqMK2E+ZN22\nTdYdO0zHaFJc0dFytWtnOgYAAH8ZJcyHrDt2KLyW23hx4vbm5lLCAABNAhPzAQAADKCEAQAAGEAJ\nAwAAMIASBgAAYAAlDAAAwABKGAAAgAEsUQEAwDE01LqPrIUYWChhAAAcQ0Ot+3g8ayE+9NBDnuch\n/vjjjzr11FN1+umnS5Juuukm/eMf/zgpme644w7dcMMN6t69+xHHUlNTlZWVpc6dO3vtHzRokO66\n665av+ev2LBhgxYtWqT777//qK8bP3680tPTFRsbW+vxSZMmKSYmRmlpaSc13/GihAEA0Ag98cQT\nnq/vvPNOXXHFFUpNTa3X937xxReKiIhQp06djvnaYz1Hsrbjde3/qzp06KAOHToc83WPPPLIST+3\nLzAnDACAJuB4HgW9bNkyrV271odpUB9cCQMAoIkpLi5WZmamdvz/eWzNmzfX448/rujoaN19991a\nunSpQkJCNGfOHL3wwgv6+eef9dxzz8nlcqm0tFTDhw/XoEGD6nWu+pS/V199VfPnz5fD4ZDb7dbt\nt9+uPn36SJKuvvpq9ezZU99884127typbt26KTU1VU8//bTKy8t15pln6pVXXpHD4dCyZcv09ttv\n64UXXpAkffrpp3r++efldrtVXl6uO+64Q9dee61SU1M1depUtWnTRrt27VJmZqYKCwtVVVWls846\nS5GRkZ5slZWVeuKJJ/Ttt9/KbrcrPDxcWVlZio6OVmFhoe69915VVVWpvLxcDz30UJ0P4z4RDVbC\nKisrNWHCBJ199tnKyMjwOlZQUKDFixfLarUqNjZWQ4cObahYAAA0KW63W4MHD9Ydd9yhfv36SZLy\n8vKUlpam/Px8Pf/885o0aZLatm3rKVpBQUGaMWOGmjVrpsrKSqWkpOgf//iHHA7HMc933333KSws\nzGvfoblqkjRt2jR99dVX+uCDDxQUFKTff/9dAwcOVGRkpLp16yabzabNmzfr3XfflSRde+21eu65\n5zRv3jxZrVbdfffdmj9/vq6//nqvc6xZs0aPPfaY5s2bpxYtWqi0tFRr1qyR9H/DoW63WzfeeKNu\nueUW9e/fX5K0YsUKXX/99Zo4caIkKSsrSxdddJEyMzMlST/88INuvfVWffjhh3rllVd09dVXa9iw\nYfrPf/6j0tLS4/7zOJoGK2GzZs1Sjx49VFhY6LW/uLhYeXl5ysrKksVi0dy5c5Wfn6+ePXs2VDQA\nAJqMLVu2yOVyeQqYJPXq1UsvvfSSvvrqK6WkpEjyvoJlt9s1YcIEbd68WW63W7t27VJxcbHOPPPM\nY55vypQpOv/88732HT7h/d1339Xzzz+voKAgSVJUVJTuuusuzZw5U926dZN08EaCQ7p27aqWLVvK\naj04Y+qCCy7Qzz//fMR5P/jgAw0bNkwtWrSQJDmdTs9nO2T9+vWqqqryFLBD73fDDTd4thcsWKDv\nv/9er776qmdfcXGxysvL1aNHD40ePVpFRUXq1q2bLrvssmP+fhyPBpkTtmjRInXp0sXzG3W4NWvW\nKCUlxTOBr3fv3lq1alVDxAIAIKAcKjZ/1r9/f3Xv3l1z587V+++/r7PPPrvec8zq87o/v8blcnll\nOfxKms1mU2hoqGfbbrfL5XLVK8uf1XVzwJ/zzJgxQ7m5uZ5fy5cv1ymnnKJevXpp8eLFSkhI0MyZ\nMzVixIgTylEXn5ewjRs3qrS0VImJibX+QZWVlcnpdHq2nU7nSb/cBwBAoDj77LPlcDi0YMECz74l\nS5Zo9+7duuiiiyRJISEhKisr8xwvLi5WUlKSpIP/3z58OPFYjnUXZFpamp544gkdOHBAkrR79269\n+OKLXle/TkTfvn01ffp07d69W5JUUlKi/Px8r9d07NhRISEhXr8XK1as0FtvveXZvu666zRmzBhV\nV1dLkpYvX64nn3xSkvTRRx9pz549uuaaazR+/HitXr36L2X+M58PR65Zs0bbt2/X5MmTtXfvXpWU\nlCgiIkJ9//96K+Hh4V6lq7S01KuUAQBgmis6WntzcxvkPCfqUBmyWCzKycnRo48+qmnTpkmSWrZs\nqbfeekt2+8H/7V955ZUaMmSI8vPzlZ2drfHjx2vAgAGKiopSfHy8evbs6VXS/spyE0OGDFF1dbX6\n9evnmZg/evRoJScnH/Oz1PbZDn3dpUsXPfrooxo2bJgk6cCBA7r55puPeK+ZM2fq0Ucf1euvv66a\nmhrFxcUpPT3dc3zMmDGaPHmy+vTpo6CgIIWFhXnmi4WHh2v48OEKCgpSTU2NJk2adMK/D7V+Tvfx\n3NP6F23YsEGrVq3ympi/a9cuTZ06VWPHjpXVatXcuXN12mmn1TknLC8vT4mJiQ0V+S+xL1vWIIv7\nBZK9ubmqvuQS0zEANGE7d+5U69atTcdAI3K0n5nVq1fXeUdlgy9RcajBzp49W6mpqWrevLl69Oih\nsWPHymazqW3btho4cGBDxwIAAGhQDVrCDl/p9vBLgSkpKUfc0QAAgAkNOECEJuJEf2ZYMR8AgMPY\nbDbt37/fdAw0Am63W7///ruCg4NP6PtZMR8AgMO0aNFCxcXF2rNnj0+ef4im4dDVL6fTecRitfVF\nCQMA4DAWi0UtW7Y0HQMBgOFIAAAAAyhhAAAABlDCAAAADKCEAQAAGEAJAwAAMIASBgAAYAAlDAAA\nwABKGAAAgAGUMAAAAAMoYQAAAAZQwgAAAAyghAEAABhACQMAADCAEgYAAGCA3XSApqwkoo1Kchaa\njtG0RESrmekMAACcBJQwH/q25Cz1zehsOkaTkpu7V5eo2nQMAAD+MoYjAQAADKCEAQAAGEAJAwAA\nMIASBgAAYAAlDAAAwABKGAAAgAGUMAAAAAMoYQAAAAZQwgAAAAyghAEAABhACQMAADCgQZ4dOWPG\nDG3evFkOh0PJycm6+uqrvY6PGzdObrdbVuvBTpiRkaG4uLiGiAYAAGCEz0tYRUWFOnbsqJtuukmS\n9Nhjj+nSSy+V0+n0vMZisWj06NEKDg72dRwAAAC/4PMSFhISoq5du0qS9u/f79l3OJvNpieffFJl\nZWXq0qWLBg0a5OtYAAAARjXIcKQkvfnmmyooKFB6erqCgoK8jo0aNUoOh0Mul0tTp07VypUrPcUN\nAACgKWqwiflDhgzRSy+9pFWrVmnbtm1exxwOx8EwVqu6det2xHEAAICmxucl7KefftKKFSskSUFB\nQYqIiFBpaann+J49e/Tuu+9Kklwul5YvX674+HhfxwIAADDK58ORrVq1Um5urj788ENJUvv27ZWQ\nkKDZs2crNTVVkZGRqqmp0cMPPyy73a7k5GQlJCT4OhYAAIBRPi9hzZo108iRI4/Yn56e7vk6LS1N\naWlpvo4CAADgN1isFQAAwABKGAAAgAGUMAAAAAMoYQAAAAZQwgAAAAyghAEAABhACQMAADCAEgYA\nAGAAJQwAAMAAShgAAIABlDAAAAADKGEAAAAGUMIAAAAMoIQBAAAYQAkDAAAwgBIGAABgACUMAADA\nAEoYAACAAZQwAAAAAyhhAAAABlDCAAAADKCEAQAAGEAJAwAAMIASBgAAYAAlDAAAwABKGAAAgAGU\nMAAAAAMoYQAAAAZQwgAAAAyghAEAABhACQMAADDA3hAnmTFjhjZv3iyHw6Hk5GRdffXVXscLCgq0\nePFiWa1WxcbGaujQoQ0RCwAAwBifl7CKigp17NhRN910kyTpscce06WXXiqn0ylJKi4uVl5enrKy\nsmSxWDR37lzl5+erZ8+evo4GAABgjM+HI0NCQtS1a1dJ0v79+z37DlmzZo1SUlJksVgkSb1799aq\nVat8HQsAAMCoBhmOlKQ333xTBQUFSk9PV1BQkGd/WVmZYmJiPNtOp1OlpaUNFQsAAMCIBpuYP2TI\nEL300ktatWqVtm3b5tkfHh7uVbpKS0s9Q5UAAABNlc9L2E8//aQVK1ZIkoKCghQREeFVujp37qyC\nggK5XC5J0pIlS5SUlOTrWAAAAEb5fDiyVatWys3N1YcffihJat++vRISEjR79mylpqaqefPm6tGj\nh8aOHSubzaa2bdtq4MCBvo4FAABglM9LWLNmzTRy5Mgj9qenp3u+TklJUUpKiq+jAAAA+A0WawUA\nADCAEgYAAGAAJQwAAMAAShgAAIABlDAAAAADKGEAAAAGUMIAAAAMoIQBAAAYQAkDAAAwgBIGAABg\nACUMAADAAEoYAACAAZQwAAAAAyhhAAAABlDCAAAADKCEAQAAGEAJAwAAMIASBgAAYAAlDAAAwABK\nGAAAgAGUMAAAAAMoYQAAAAZQwgAAAAyghAEAABhACQMAADCAEgYAAGAAJQwAAMAAShgAAIAB9Sph\nmzZtOmLf7NmzT3oYAACAQFGvEvbyyy9rx44dnu25c+dqy5YtPgsFAADQ1Nnr86K7775bU6ZM0Zgx\nY/Tll19q7dq1evjhh+t9ko8++kjLli2T3W5X69atNWLECNnt/3fqcePGye12y2o92AkzMjIUFxd3\nnB8FAACg8ahXCYuLi9OwYcM0btw4RUREaMyYMQoODq7XCcrKyrR9+3ZlZ2fLYrFo1qxZWr58uS6+\n+GLPaywWi0aPHl3v9wQAAGjs6ixh77333hH7oqKiFBsbq4ULF8pisWjgwIHHPEFYWJhuvfVWz3Zl\nZaWaN2/u9RqbzaYnn3xSZWVl6tKliwYNGnQ8nwEAAKDRqbOE/bkoSdJll132l042f/58hYaG6pxz\nzvHaP2rUKDkcDrlcLk2dOlUrV65U165d/9K5AAAA/FmdJezyyy/3fH3gwAHt27dPzZo1U1BQ0HGf\nxOVy6Y033lCrVq00YMCAI447HA5JktVqVbdu3bR161ZKGAAAaNLqLGEul0sLFixQQUGBKioqFBIS\nooqKCgUHByslJUX9+/f3TKQ/moqKCr344ou69NJLlZycfMTxPXv26JNPPtH1118vl8ul5cuXq3v3\n7n/tUwEAAPi5OktYTk6O9u/fr8zMTEVGRnr279mzR3PmzNHMmTM1ZMiQY54gPz9fW7ZsUVlZmRYt\nWiRJ6tGjhwoLC5WamqrIyEjV1NTo4Ycflt1uV3JyshISEv76JwMAAPBjdZawH374QdnZ2Ufsj4yM\n1G233VbvJSquuuoqXXXVVUd9TVpamtLS0ur1fgAAAE1BneOJxxpqtNlsJz0MAABAoKizabVs2VIL\nFiyQ2+322u9yuTR//ny1aNHC5+EAAACaqjqHI4cPH64ZM2bo1ltvVcuWLXXKKaeooqJCRUVF6tKl\ni0aMGNGQOQEAAJqUOktYSEiIbrnlFh04cEBFRUUqLy/XKaecolatWp3QMhUAAAD4P0d9bFFxcbG+\n/PJLbd26Vfv371doaKhiY2PVrVs3tWzZsqEyAgAANDl1zglbvXq1HnvsMUlS7969df3116tXr16S\npMcff1wrV65smIQAAABNUJ1XwubNm6cJEyYoIiLCa39CQoIuv/xyTZ48mVXtAQAATlCdV8LsdvsR\nBeyQyMhI2e1HHckEAADAUdRZwtxut4qKimo9tnPnTrlcLp+FAgAAaOrqvJyVnp6urKwsJSUlqV27\ndp5nR27dulWrVq3SPffc05A5AQAAmpQ6S1h8fLwmT56slStXatu2bZ4lKs455xylpaUpNDS0IXMC\nAAA0KUed2BUaGqqUlBSlpKQ0VB4AAICAcPQHRAIAAMAn6rwSVlZWdsxvDgsLO6lhAAAAAkWdJezm\nm2+W0+mUzWar9bjFYtELL7zgs2AAAABNWZ0l7MYbb9SmTZt07733NmQeAACAgFDnnLArr7xSNptN\nK1asaMg8AAAAAeGod0fefvvtdQ5HAgAA4MQd9e5IChgAAIBvsEQFAACAAZQwAAAAAyhhAAAABtSr\nhGVlZfk6BwAAQECpVwlzuVzat2+fr7MAAAAEjKMuUXFIXFycHn30UXXv3l0Oh0PSwRXzr7nmGp+G\nAwAAaKrqVcJCQkJ00UUXqaamRjU1Nb7OBAAA0OTVq4Rdd911vs4BAAAQUOo1J6yqqkpz5szR5MmT\nJUmrV69WRUWFT4MBAAA0ZfUqYbNnz1bLli21d+9eSdJvv/2mmTNn+jQYAABAU1avErZjxw717NnT\n8xijPn366Oeff/ZpMAAAgKasXnPC3G73Efus1vqv8/rRRx9p2bJlstvtat26tUaMGCG7/f9OXVBQ\noMWLF8tqtSo2NlZDhw6t93sDAAA0RvVqUhEREfr11189259++qmaN29erxOUlZVp+/btys7O1uOP\nP67w8HAtX77cc7y4uFh5eXnKysryHM/Pzz/OjwEAANC41KuEDR48WDNmzND27dv14IMP6n//9391\n00031esEYWFhuvXWW2WxWCRJlZWVXgVuzZo1SklJ8Rzv3bu3Vq1adbyfAwAAoFGp13Dkaaedpoce\nekg7d+6UJJ1xxhkndLL58+crNDRU55xzjmdfWVmZYmJiPNtOp1OlpaUn9P4AAACNRb0ndhUWFurT\nTz9VXl6eduzYcVwncblcev311+VwOJSWluZ1LDw83Kt0lZaWyul0Htf7AwAANDb1KmHr1q3Ts88+\nq5YtWyoqKkrPPPOM1q9fX68TVFRUaMqUKUpISKj1MUedO3dWQUGBXC6XJGnJkiVKSko6jo8AAADQ\n+NRrOHLevHkaM2aMoqKiJEkXXnihXnzxRXXs2PGY35ufn68tW7aorKxMixYtkiT16NFDhYWFSk1N\nVfPmzdWjRw+NHTtWNptNbdu21cCBA//CRwIAAPB/9SphLpfLU8AkKSoqynPl6liuuuoqXXXVVUd9\nTUpKilJSUur1fgAAAE1BvYYja2pqvNYKc7lcPMgbAADgL6hXCUtJSdE777wj6eDCre+8844uu+wy\nnwYDAABoyuo1HLlgwQL9/vvvWrx4sSSpvLxcUVFRmj9/viTJYrHohRde8F1KAACAJqZeJezFF1/0\ndQ4AAICAUv8HQAIAAOCkoYQBAAAYQAkDAAAwgBIGAABgACUMAADAAEoYAACAAZQwAAAAAyhhAAAA\nBlDCAAAADKCEAQAAGEAJAwAAMIASBgAAYAAlDAAAwABKGAAAgAGUMAAAAAMoYQAAAAZQwgAAAAyg\nhAEAABhACQMAADCAEgYAAGAAJQwAAMAAu+kAAMyzbtsm644dpmM0Oa7oaLnatTMdA4CfooQBkHXH\nDoX37Ws6RpOzNzeXEgagTgxHAgAAGEAJAwAAMIASBgAAYAAlDAAAwIAGmZhfXV2tt956Sxs3btTE\niROPOD5u3Di53W5ZrQc7YUZGhuLi4hoiGgAAgBENUsLmzJmjTp06aePGjbUet1gsGj16tIKDgxsi\nDgAAgHENUsIyMjIkSe+9916tx202m5588kmVlZWpS5cuGjRoUEPEAgAAMMYv1gkbNWqUHA6HXC6X\npk6dqpUrV6pr166mYwEAAPiMX0zMdzgckiSr1apu3bpp27ZtZgMBAAD4mPEStmfPHr377ruSJJfL\npeXLlys+Pt5wKgAAAN8yNhw5e/ZspaamKjIyUjU1NXr44Ydlt9uVnJyshIQEU7EAAAAaRIOWsMOX\np0hPT/d8nZaWprS0tIaMAgAAYJTx4UgAAIBARAkDAAAwgBIGAABgACUMAADAAEoYAACAAZQwAAAA\nAyhhAAAABlDCAAAADKCEAQAAGEAJAwAAMIASBgAAYAAlDAAAwABKGAAAgAGUMAAAAAMoYQAAAAZQ\nwgAAAAyghAEAABhgNx0AAIDjYd22TdYdO0zHaHJc0dFytWtnOkZAoYQBABoV644dCu/b13SMJmdv\nbi4lrIExHAkAAGAAJQwAAMAAShgAAIABlDAAAAADKGEAAAAGUMIAAAAMoIQBAAAYQAkDAAAwgBIG\nAABgACUMAADAAEoYAACAAT5/dmR1dbXeeustbdy4URMnTjzieEFBgRYvXiyr1arY2FgNHTrU15EA\nAACM8/mVsDlz5qhTp061HisuLlZeXp6ysrL0+OOPKzw8XPn5+b6OBAAAYJzPS1hGRoYSExNrPbZm\nzRqlpKTIYrFIknr37q1Vq1b5OhIAAIBxRueElZWVyel0eradTqdKS0sNJgIAAGgYRktYeHi4V+kq\nLS31KmUikfVbAAAULUlEQVQAAABNldES1rlzZxUUFMjlckmSlixZoqSkJJORAAAAGoTP746szezZ\ns5WamqrmzZurR48eGjt2rGw2m9q2bauBAweaiAQAANCgGqyEHb48RXp6uufrlJQUpaSkNFQMAAAA\nv8BirQAAAAZQwgAAAAyghAEAABhACQMAADCAEgYAAGAAJQwAAMAAShgAAIABlDAAAAADKGEAAAAG\nUMIAAAAMoIQBAAAYQAkDAAAwgBIGAABggN10AADmlUS0UUnOQtMxmp6IaDUznQGA36KEAdC3JWep\nb0Zn0zGanNzcvbpE1aZjAPBTDEcCAAAYQAkDAAAwgBIGAABgACUMAADAAEoYAACAAZQwAAAAAyhh\nAAAABlDCAAAADKCEAQAAGEAJAwAAMIASBgAAYAAlDAAAwABKGAAAgAGUMAAAAAMoYQAAAAbYG+Ik\nubm5WrFihSQpMTFRAwYM8Do+btw4ud1uWa0HO2FGRobi4uIaIhoAAIARPi9hGzdu1NatW5WVlSVJ\neumll7R27Vqdd955ntdYLBaNHj1awcHBvo4DAADgF3xewr799lv16tXLs92rVy999dVXXiXMZrPp\nySefVFlZmbp06aJBgwb5OhYAAIBRPi9he/fuVXh4uGfb6XSqpKTE6zWjRo2Sw+GQy+XS1KlTtXLl\nSnXt2tXX0QAAAIzx+cT88PBwlZaWerZLS0vldDq9XuNwOA6GsVrVrVs3bdu2zdexAAAAjPJ5CUtM\nTFR+fr5nOz8/X0lJSZ7tPXv26N1335UkuVwuLV++XPHx8b6OBQAAYJTPhyPPPfdcbd68WY888oik\ng6XsvPPO0+zZs5WamqrIyEjV1NTo4Ycflt1uV3JyshISEnwdCwAAwKgGWaKiX79+6tevn9e+9PR0\nz9dpaWlKS0triCgAAAB+gcVaAQAADKCEAQAAGEAJAwAAMIASBgAAYAAlDAAAwABKGAAAgAGUMAAA\nAAMoYQAAAAZQwgAAAAyghAEAABhACQMAADCAEgYAAGAAJQwAAMAAShgAAIABlDAAAAADKGEAAAAG\nUMIAAAAMoIQBAAAYQAkDAAAwgBIGAABgACUMAADAAEoYAACAAZQwAAAAAyhhAAAABlDCAAAADKCE\nAQAAGEAJAwAAMIASBgAAYAAlDAAAwABKGAAAgAF20wEAADgeJRFtVJKz0HSMeqmqqpLD4TAdo34i\notXMdIYA0yAlLDc3VytWrJAkJSYmasCAAV7HCwoKtHjxYlmtVsXGxmro0KENEQsA0Ah9W3KW+mZ0\nNh2jycnN3atLVG06RkDx+XDkxo0btXXrVmVlZSkrK0tFRUVau3at53hxcbHy8vKUlZWlxx9/XOHh\n4crPz/d1LAAAAKMsbrfb7csTvPXWW0pISFCnTp0kST/88IO++uor3XTTTZKkTz75RHa7XT179pQk\n7dmzR6+99poefPDBWt8vLy/Pl3EBAABOql69etW63+fDkXv37lV4eLhn2+l0qqSkxLNdVlammJgY\nr+OlpaV1vl9dHwQAAKAx8flwZHh4uFepKi0tldPprPdxAACApsjnJSwxMdFrjld+fr6SkpI82507\nd1ZBQYFcLpckacmSJV7HAQAAmiKfzwmTpA8++MDr7shrr71Ws2fPVmpqqpxOp5YuXarFixfLZrOp\nbdu2+uc//+nrSAAAAEY1SAkDAACAN1bMBwAAMIASBo9D8/IAAIDv8diiALdgwQIlJyfr119/1dtv\nv60uXbooPT3ddCygTr///rvKy8slHXwkTGxsrOFEgLfNmzdr4cKF2rdvn2dfZmamwUTwV5SwALdq\n1Sr1799fn376qZ566ik98sgjpiMBdZoxY4a2bdumX3/9Va1atVJkZKRGjhxpOhbgZfr06br11lvV\nqlUr01Hg5xiODHAul0u//PKLgoKC5Ha7ZbPZTEcC6rR582ZlZmYqJiZG48aNk93OvyPhf0JDQ9Wu\nXTuFhIR4fgG14W+wANevXz+9/fbbuvHGG/Xjjz+qe/fupiMBdWrWrJkkyW63q6amRn/88YfhRMCR\nevTooXnz5ik+Pl5W68FrHR06dDCcCv6IEhbgkpOT1bVrV/3xxx+Kj49XfHy86UhAnc477zwVFxfr\noosuUnZ2tqeUAf5k48aNKikp8ZoTRglDbVgnLMBt2LBB8+fP13//+18NHz5cv/32my677DLTsYBj\n2rVrl0477TSG0OF3xowZo+zsbNMx0AhwJSzAzZs3Tw899JCys7PVvn175eTkUMLgVz7++GOvbYvF\nIrfbLYvFIkm64oorTMQC6hQXF6fff/9dUVFRpqPAz1HCAlxNTY1ncrPFYmECKfzO4T+ThYWF2rp1\nqy6++GJ99dVXatu2rcFkQO02bdqke++9V2eccYZnTtjEiRMNp4I/ooQFuMjISG3atEmS9OOPPyoy\nMtJwIsDb5Zdf7vk6Oztbo0aNUnBwsFJSUjR58mRzwYA6TJo0yVO+gKOhhAW4f/7zn8rJydH+/fv1\n2WefaejQoaYjAXWqqqpScHCwJCkoKEjV1dWGEwFHcrvdWrBggX744Qedc8456tevH6UMteKnIsBt\n3rxZt912myZNmqSbb75ZP/zwg+lIQJ2CgoK0a9cuSdLu3bsVFBRkOBFwpJycHNlsNo0YMUIOh0Mz\nZswwHQl+ihIW4D788EOv7QULFhhKAhxbRkaGnn32WU2cOFFTpkzhEVvwS1u3blVqaqpOPfVUXXPN\nNdq+fbvpSPBTDEcGqCVLligvL0+//vqrRo8eLeng6vnnnnuu4WRA3dq0aaPs7GyVlZUpLCzMdByg\nVofu3AWOhXXCAtz48eN5XiQajT/++EOfffaZysvL5Xa7VV1dzTxG+J3p06erRYsW6t69u7788ksV\nFRVp2LBhpmPBDzEcGeAeeeQRuVwuVVZWqrKyUmVlZaYjAXV69tlnFRUVpbVr1+rMM89kSRX4pYyM\nDFVWVuqVV15RRUWFbrzxRtOR4KcYjgxwCxcu1Geffab//ve/CgsLU8uWLbkyBr9lt9t1+eWX64sv\nvlDPnj319NNPm44EHMFut+vaa681HQONACUswC1btkxPPfWUJkyYoFGjRun11183HQmok91uV2Vl\npZxOp3bu3Om5UxIw7dDc2kN2796tiIgIlZSU6PTTT2exVtSKEhbgIiIiZLVaZbPZZLfbtXv3btOR\ngDoNGjRIlZWVGjBggF599VX9/e9/Nx0JkOS9Iv7bb7+t9u3bq0uXLlqzZo02bNhgMBn8GSUswLVp\n00a7du3SeeedpxdffNF0HOCo4uLiJElOp1OZmZmG0wC127hxowYNGiRJ6ty5sz744APDieCvKGEB\nLiMjQ5J0zTXXaP369YqNjTWcCKjb9u3btWjRIu3bt0/SwaUARo4caTgV4O3Piw64XC5DSeDvuDsy\nwB0+sbljx46aNm2awTTA0U2dOlVJSUkaPHiw5xfgbxISEjRz5kxt2bJFOTk56tSpk+lI8FNcCQtQ\nW7Zs0ZYtW7R9+3YtXrzYs+bSf/7zH9PRgDqFhoaqa9eupmMARzVw4EAtW7ZMBQUFOvvss3XppZea\njgQ/RQkLUHa7XSEhIbJarZ4HIlutVv3rX/8ynAyoW3x8vDZs2KAOHTqYjgIc1SWXXKJLLrnEdAz4\nOUpYgGrXrp3atWsnu93OXxRoNL777jstW7ZMzZo1k9V6cDYFt/7D34waNUo7d+5U27ZttX37drVs\n2VIul0unnnqqhg8frpYtW5qOCD/BY4sC1MaNG9WiRQtFRUWpurpar732msrLyzVkyBCddtpppuMB\nQKOVk5OjHj16KDo6Wjt27NCiRYs0YsQIrVu3TvPnz9fYsWNNR4SfYGJ+gHrnnXfkcDgkSR9//LEu\nvPBC9evXj4n58Gt//PGH3n//fc2aNUs5OTmaPn266UjAEX766SdFR0dLkqKjo/Xbb79Jkjp16qTK\nykqT0eBnKGEBymKxyOl0SpKKioqUmJios846S/v37zecDKgbz45EY1BVVaWKigpJUkVFhad4uVwu\n1dTUmIwGP0MJC1A1NTXav3+/CgsLFRkZKeng2jbl5eWGkwF1O/TsSKfTqZ49e+rXX381HQk4Qmpq\nqrKzs7VgwQJNmDBBqampkg6upJ+cnGw4HfwJE/MD1LXXXqvMzEw5nU7dc889kqSvv/6avyDg13h2\nJBqDiy66SLGxsdq2bZvuvPNOtWjRQpLUr18/NWvWzHA6+BMm5sPD5XJ57jgD/E11dbUKCwsVFRWl\n0tJSTZo0SQMGDFDPnj1NRwOO8N///ldlZWWSDk7/ODRHDDgcV8LgQQGDv1qyZIksFot69eol6eCz\nI6+88krPvBvAn8yYMUObNm1SdHS0LBaLJOn22283nAr+iBIGwO99/vnnRzywu0+fPnrsscd01VVX\nGUoF1G7Dhg164oknPAUMqAuXPgD4PZvN5llS5RCu3MJfsdYi6osrYQHo448/9tq2WCw6NDXQYrHo\niiuuMBELqFNVVVWt+w8cONDASYBjO/300zV+/HglJSXJarXy9yrqxD8lA1BISIjn165du/TNN9/I\nbrdrxYoVnkUFAX+SmJiopUuXeu0rKChQYmKioURA3WJjY3XppZcqNDRUISEhnufzAn/G3ZEBLjs7\nWw888ICCg4N14MABTZ48WWPGjDEdC/BSWVmpp556SjExMYqLi9NPP/2kHTt26IEHHlBQUJDpeABw\nQhiODHBVVVWef6UFBQWpurracCLgSMHBwRo9erSWL1+unTt3Kj4+XhkZGUx8hl+ZPXu20tPTNXr0\n6COO8aB51IYSFuCCgoK0a9cuNW/eXLt37+aqAvyW1WrVRRddZDoGUKcbbrhB0pGFy+VymYiDRoDh\nyABXWFiol19+WWFhYSorK9Mtt9yimJgY07EAoNHJz8+vdfHg6dOna+jQoQYSwd9xJSzAtWnTRtnZ\n2SorK1NYWJjpOADQaK1YsUKnn366EhISPPs++ugjpnmgTtwdGeD279+vnJwcvfbaayoqKlJRUZHp\nSADQKN1111167733tH37dknSypUrtWLFCg0bNsxwMvgrSliAmzZtmi688EKVlpYqJCREb7zxhulI\nANAohYaG6p577tFLL72klStXas6cORo5cqRsNpvpaPBTlLAAt2fPHsXHx0uSIiMjVVlZaTgRADRO\nlZWVCg8PV3p6uv7973/rlltuUXBwMH+vok7MCQtwNTU1nr8gDhw4ILudHwkAOBFPPPGE5+vY2FjN\nmTPHs/3nZ58CEndHBrx169bp/fffV1FRkc4880wNGDBAHTt2NB0LAIAmjxIW4Kqrq3XgwAEVFRXp\njDPOkMVi4REbAAA0AOaEBbjs7GyFhoYqLi5OISEheu6550xHAgAgIDABKEB9//33+u6771RUVKSc\nnBxJB6+K7dq1y3AyAAACAyUsQLVu3Vo2m01r165VUlKS3G63rFarrrvuOtPRAKDR+fjjj722LRaL\nDs32sVgsuuKKK0zEgp+jhAWo5s2bq3nz5rrxxhvVoUMH03EAoFELCQnxfF1YWKitW7fq4osv1ldf\nfaW2bdsaTAZ/xsT8APXNN9/owgsv9AxFHmKxWDR48GBDqQCg8cvOztYDDzyg4OBgHThwQJMnT9aY\nMWNMx4If4kpYgDr11FMlSYmJiV77LRaLiTgA0GRUVVV57jIPCgri2ZGoEyUsQB1aJZ81wQDg5AoK\nCtKuXbvUvHlz7d69W0FBQaYjwU8xHBng1q1bpwULFmjfvn2efRMnTjSYCAAat8LCQr388ssKCwtT\nWVmZbrnlFsXExJiOBT9ECQtwDz74oO666y5FR0fLamXZOAA4WcrKyhQWFmY6BvwYw5EBzul08i80\nADiJ9u/fr/fff1+7d+9WWlqaJKlVq1aGU8EfcekjwJ1//vlaunSpysvLVVFR4XmYNwDgxEybNk0X\nXnihSktLFRISojfeeMN0JPgproQFuFWrVslqteqzzz7z7MvMzDSYCAAatz179nhufoqMjOQft6gT\nJSzAPfbYY6YjAECTUlNT4yleBw4ckN3O/2pROybmB6g/L9IaEhKiv/3tb+rUqZOhRADQNKxbt07v\nv/++ioqKdOaZZ2rAgAEsB4RaUcIC1Pr1670WZi0vL9fnn3+us846S/379zeYDAAat+rqah04cEBF\nRUU644wzZLFYPIu3AodjYn6A6tixozp06OD5lZSUpJEjR+qbb74xHQ0AGrXs7GyFhoYqLi5OISEh\neu6550xHgp9ioBoeVqvV6yG0AID6+/777/Xdd9+pqKjIM+Wjurpau3btMpwM/ooSBo+ioiIxOg0A\nJ6Z169ay2Wxau3atkpKS5Ha7ZbVadd1115mOBj/FnLAA9cwzz3htV1RUqKSkxLN6PgDgxKxbt46b\nnFAvlLAAVVxc7LUdFBSkiIgIr8n6AID6++abb3ThhRcecfe5xWLR4MGDDaWCP2M4MkC1aNHCdAQA\naFJOPfVUSVJiYqLXfv5xi7pwJQwAAMAAroQBAHASrVu3TgsWLNC+ffs8+yZOnGgwEfwVJQwAgJNo\nxowZnpucrFaW40TdKGEAAJxETqdTMTExpmOgEaCiAwBwEp1//vlaunSpysvLVVFR4XmYN/BnXAkD\nAOAkWrVqlaxWqz777DPPvszMTIOJ4K+4OxIAAMAAroQBAHAS/HmR1pCQEP3tb39j9XzUiSthAACc\nBOvXr/damLW8vFyff/65zjrrLPXv399gMvgrShgAAD7icrk0ZswY1glDrbg7EgAAH7FarQoJCTEd\nA36KEgYAgI8UFRWJASfUhYn5AACcBM8884zXdkVFhUpKSnTXXXcZSgR/x5wwAABOguLiYq/toKAg\nRUREeE3WBw5HCQMAADCAOWEAAAAGUMIAAAAMoIQBAAAYQAkDAAAwgBIGAABgwP8DiF1qppEYO0gA\nAAAASUVORK5CYII=\n", "text": [ "" ] } ], "prompt_number": 15 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Normalize to the US numbers (inverse)" ] }, { "cell_type": "code", "collapsed": false, "input": [ "select['Homicides'] = select['Homicides']['United States'] / select['Homicides']\n", "select['Gun Homicides'] = select['Gun Homicides']['United States'] / select['Gun Homicides']\n", "display_relevant(select)" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
HomicidesGun HomicidesGun Data Source
United States 1.0 1.0 OAS 2012[5][6]
Canada 2.6 4.9 Krug 1998[13]
United Kingdom 3.5 92.5 WHO2012 [10]
\n", "
" ], "output_type": "display_data", "text": [ " Homicides Gun Homicides Gun Data Source\n", "United States 1.0 1.0 OAS 2012[5][6]\n", "Canada 2.6 4.9 Krug 1998[13]\n", "United Kingdom 3.5 92.5 WHO2012 [10]" ] } ], "prompt_number": 16 }, { "cell_type": "markdown", "metadata": {}, "source": [ "So, you are 2.6 times more likely to be killed in the US than Canada,\n", "and 3.5 times more likely than in the UK.\n", "That's bad, but not extreme.\n", "\n", "However, you are 4.9 times more likely to be killed *with a gun* in the US than Canada,\n", "and almost 100 times more likely than in the UK. That is pretty extreme.\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Countries represented:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "for country in data.index:\n", " print country" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "El Salvador\n", "Jamaica\n", "Honduras\n", "Guatemala\n", "Colombia\n", "Brazil\n", "Panama\n", "Mexico\n", "Paraguay\n", "Nicaragua\n", "United States\n", "Costa Rica\n", "Uruguay\n", "Argentina\n", "Barbados\n", "Montenegro\n", "Peru\n", "Moldova\n", "Israel\n", "India\n", "Canada\n", "Serbia\n", "Luxembourg\n", "Greece\n", "Uzbekistan\n", "Croatia\n", "Kyrgyzstan\n", "Switzerland\n", "Malta\n", "Portugal\n", "Belarus\n", "Ireland\n", "Italy\n", "Kuwait\n", "Ukraine\n", "Estonia\n", "Belgium\n", "Finland\n", "Lithuania\n", "Cyprus\n", "Bulgaria\n", "Georgia\n", "Denmark\n", "France\n", "Netherlands\n", "Sweden\n", "Slovakia\n", "Qatar\n", "Austria\n", "Latvia\n", "New Zealand\n", "Spain\n", "Hungary\n", "Czech Republic\n", "Hong Kong\n", "Australia\n", "Singapore\n", "Chile\n", "Germany\n", "Slovenia\n", "Romania\n", "Azerbaijan\n", "South Korea\n", "United Kingdom\n", "Norway\n", "Japan\n", "Poland\n", "Mauritius\n" ] } ], "prompt_number": 14 } ], "metadata": {} } ] }