# -*- coding: utf-8 -*- """ ====== Rmagic ====== Magic command interface for interactive work with R via rpy2 Usage ===== ``%R`` {R_DOC} ``%Rpush`` {RPUSH_DOC} ``%Rpull`` {RPULL_DOC} ``%Rget`` {RGET_DOC} """ #----------------------------------------------------------------------------- # Copyright (C) 2012 The IPython Development Team # # Distributed under the terms of the BSD License. The full license is in # the file COPYING, distributed as part of this software. #----------------------------------------------------------------------------- import sys import tempfile from glob import glob from shutil import rmtree # numpy and rpy2 imports import numpy as np import rpy2.rinterface as ri import rpy2.robjects as ro try: from rpy2.robjects import pandas2ri pandas2ri.activate() except ImportError: pandas2ri = None from rpy2.robjects import numpy2ri numpy2ri.activate() # IPython imports from IPython.core.displaypub import publish_display_data from IPython.core.magic import (Magics, magics_class, line_magic, line_cell_magic, needs_local_scope) from IPython.testing.skipdoctest import skip_doctest from IPython.core.magic_arguments import ( argument, magic_arguments, parse_argstring ) from IPython.external.simplegeneric import generic from IPython.utils.py3compat import str_to_unicode, unicode_to_str, PY3 class RInterpreterError(ri.RRuntimeError): """An error when running R code in a %%R magic cell.""" def __init__(self, line, err, stdout): self.line = line self.err = err.rstrip() self.stdout = stdout.rstrip() def __unicode__(self): s = 'Failed to parse and evaluate line %r.\nR error message: %r' % \ (self.line, self.err) if self.stdout and (self.stdout != self.err): s += '\nR stdout:\n' + self.stdout return s if PY3: __str__ = __unicode__ else: def __str__(self): return unicode_to_str(unicode(self), 'utf-8') def Rconverter(Robj, dataframe=False): """ Convert an object in R's namespace to one suitable for ipython's namespace. For a data.frame, it tries to return a structured array. It first checks for colnames, then names. If all are NULL, it returns np.asarray(Robj), else it tries to construct a recarray Parameters ---------- Robj: an R object returned from rpy2 """ is_data_frame = ro.r('is.data.frame') colnames = ro.r('colnames') rownames = ro.r('rownames') # with pandas, these could be used for the index names = ro.r('names') if dataframe: as_data_frame = ro.r('as.data.frame') cols = colnames(Robj) _names = names(Robj) if cols != ri.NULL: Robj = as_data_frame(Robj) names = tuple(np.array(cols)) elif _names != ri.NULL: names = tuple(np.array(_names)) else: # failed to find names return np.asarray(Robj) Robj = np.rec.fromarrays(Robj, names = names) return np.asarray(Robj) @generic def pyconverter(pyobj): """Convert Python objects to R objects. Add types using the decorator: @pyconverter.when_type """ return pyobj # The default conversion for lists seems to make them a nested list. That has # some advantages, but is rarely convenient, so for interactive use, we convert # lists to a numpy array, which becomes an R vector. @pyconverter.when_type(list) def pyconverter_list(pyobj): return np.asarray(pyobj) if pandas2ri is None: # pandas2ri was new in rpy2 2.3.3, so for now we'll fallback to pandas' # conversion function. try: from pandas import DataFrame from pandas.rpy.common import convert_to_r_dataframe @pyconverter.when_type(DataFrame) def pyconverter_dataframe(pyobj): return convert_to_r_dataframe(pyobj, strings_as_factors=True) except ImportError: pass @magics_class class RMagics(Magics): """A set of magics useful for interactive work with R via rpy2. """ def __init__(self, shell, Rconverter=Rconverter, pyconverter=pyconverter, cache_display_data=False): """ Parameters ---------- shell : IPython shell Rconverter : callable To be called on values taken from R before putting them in the IPython namespace. pyconverter : callable To be called on values in ipython namespace before assigning to variables in rpy2. cache_display_data : bool If True, the published results of the final call to R are cached in the variable 'display_cache'. """ super(RMagics, self).__init__(shell) self.cache_display_data = cache_display_data self.r = ro.R() self.Rstdout_cache = [] self.pyconverter = pyconverter self.Rconverter = Rconverter def eval(self, line, line_mode): ''' Parse and evaluate a line with rpy2. Returns the output to R's stdout() connection, and the value generated by evaluating the code (see below) In line mode (ie called with %R ), resulting values are not printed (explicit calls to the show/print R functions still result in properly captured R output). In cell mode (called with %%R ...), behavior reproduces the REPL behavior of the R interpreter (which agrees with how cells of python code are handled by the notebook). In cell mode if the last line of code is not an assignment, wrapped in invisible(), or a call to a function which returns its value invisibly, the value will be printed using the show R function. Actual evaluation of R code is done via an R call of the form withVisible({}) ''' old_writeconsole = ri.get_writeconsole() ri.set_writeconsole(self.write_console) try: res = ro.r("withVisible({%s})" % line) value = res[0] #value except (ri.RRuntimeError, ValueError) as exception: warning_or_other_msg = self.flush() # otherwise next return seems to have copy of error raise RInterpreterError(line, str_to_unicode(str(exception)), warning_or_other_msg) if not line_mode and ro.conversion.ri2py(res[1])[0]: ro.r.show(value) text_output = self.flush() ri.set_writeconsole(old_writeconsole) return text_output, value def write_console(self, output): ''' A hook to capture R's stdout in a cache. ''' self.Rstdout_cache.append(output) def flush(self): ''' Flush R's stdout cache to a string, returning the string. ''' value = ''.join([str_to_unicode(s, 'utf-8') for s in self.Rstdout_cache]) self.Rstdout_cache = [] return value @skip_doctest @needs_local_scope @line_magic def Rpush(self, line, local_ns=None): ''' A line-level magic for R that pushes variables from python to rpy2. The line should be made up of whitespace separated variable names in the IPython namespace:: In [7]: import numpy as np In [8]: X = np.array([4.5,6.3,7.9]) In [9]: X.mean() Out[9]: 6.2333333333333343 In [10]: %Rpush X In [11]: %R mean(X) Out[11]: array([ 6.23333333]) ''' if local_ns is None: local_ns = {} inputs = line.split(' ') for input in inputs: try: val = local_ns[input] except KeyError: try: val = self.shell.user_ns[input] except KeyError: # reraise the KeyError as a NameError so that it looks like # the standard python behavior when you use an unnamed # variable raise NameError("name '%s' is not defined" % input) self.r.assign(input, self.pyconverter(val)) @skip_doctest @magic_arguments() @argument( '-d', '--as_dataframe', action='store_true', default=False, help='Convert objects to data.frames before returning to ipython.' ) @argument( 'outputs', nargs='*', ) @line_magic def Rpull(self, line): ''' A line-level magic for R that pulls variables from python to rpy2:: In [18]: _ = %R x = c(3,4,6.7); y = c(4,6,7); z = c('a',3,4) In [19]: %Rpull x y z In [20]: x Out[20]: array([ 3. , 4. , 6.7]) In [21]: y Out[21]: array([ 4., 6., 7.]) In [22]: z Out[22]: array(['a', '3', '4'], dtype='|S1') If --as_dataframe, then each object is returned as a structured array after first passed through "as.data.frame" in R before being calling self.Rconverter. This is useful when a structured array is desired as output, or when the object in R has mixed data types. See the %%R docstring for more examples. Notes ----- Beware that R names can have '.' so this is not fool proof. To avoid this, don't name your R objects with '.'s... ''' args = parse_argstring(self.Rpull, line) outputs = args.outputs for output in outputs: self.shell.push({output:self.Rconverter(self.r(output),dataframe=args.as_dataframe)}) @skip_doctest @magic_arguments() @argument( '-d', '--as_dataframe', action='store_true', default=False, help='Convert objects to data.frames before returning to ipython.' ) @argument( 'output', nargs=1, type=str, ) @line_magic def Rget(self, line): ''' Return an object from rpy2, possibly as a structured array (if possible). Similar to Rpull except only one argument is accepted and the value is returned rather than pushed to self.shell.user_ns:: In [3]: dtype=[('x', '|t|) (Intercept) 0.0800 2.3000 0.035 0.975 X 1.0400 0.4822 2.157 0.164 Residual standard error: 2.088 on 2 degrees of freedom Multiple R-squared: 0.6993,Adjusted R-squared: 0.549 F-statistic: 4.651 on 1 and 2 DF, p-value: 0.1638 In the notebook, plots are published as the output of the cell. %R plot(X, Y) will create a scatter plot of X bs Y. If cell is not None and line has some R code, it is prepended to the R code in cell. Objects can be passed back and forth between rpy2 and python via the -i -o flags in line:: In [14]: Z = np.array([1,4,5,10]) In [15]: %R -i Z mean(Z) Out[15]: array([ 5.]) In [16]: %R -o W W=Z*mean(Z) Out[16]: array([ 5., 20., 25., 50.]) In [17]: W Out[17]: array([ 5., 20., 25., 50.]) The return value is determined by these rules: * If the cell is not None, the magic returns None. * If the cell evaluates as False, the resulting value is returned unless the final line prints something to the console, in which case None is returned. * If the final line results in a NULL value when evaluated by rpy2, then None is returned. * No attempt is made to convert the final value to a structured array. Use the --dataframe flag or %Rget to push / return a structured array. * If the -n flag is present, there is no return value. * A trailing ';' will also result in no return value as the last value in the line is an empty string. The --dataframe argument will attempt to return structured arrays. This is useful for dataframes with mixed data types. Note also that for a data.frame, if it is returned as an ndarray, it is transposed:: In [18]: dtype=[('x', '