""" Module that regroups transformer that woudl be applied to ipynb files before going through the templating machinery. It exposes convenient classes to inherit from to access configurability as well as decorator to simplify tasks. """ from __future__ import print_function from IPython.config.configurable import Configurable from IPython.utils.traitlets import Unicode, Bool, Dict, List from converters.config import GlobalConfigurable class ConfigurableTransformers(GlobalConfigurable): """ A configurable transformer Inherit from this class if you wish to have configurability for your transformer. Any configurable traitlets this class exposed will be configurable in profiles using c.SubClassName.atribute=value you can overwrite cell_transform to apply a transformation independently on each cell or __call__ if you prefer your own logic. See orresponding docstring for informations. """ def __init__(self, config=None, **kw): super(ConfigurableTransformers, self).__init__(config=config, **kw) def __call__(self, nb, other): """transformation to apply on each notebook. received a handle to the current notebook as well as a dict of resources which structure depends on the transformer. You should return modified nb, other. If you wish to apply on each cell, you might want to overwrite cell_transform method. """ try : for worksheet in nb.worksheets : for index, cell in enumerate(worksheet.cells): worksheet.cells[index], other = self.cell_transform(cell, other, index) return nb, other except NotImplementedError: raise NotImplementedError('should be implemented by subclass') def cell_transform(self, cell, other, index): """ Overwrite if you want to apply a transformation on each cell, receive the current cell, the resource dict and the index of current cell as parameter. You should return modified cell and resource dict. """ raise NotImplementedError('should be implemented by subclass') return cell, other class ActivatableTransformer(ConfigurableTransformers): """A simple ConfigurableTransformers that have an enabled flag Inherit from that if you just want to have a transformer which is no-op by default but can be activated in profiles with c.YourTransformerName.enabled = True """ enabled = Bool(False, config=True) def __call__(self, nb, other): if not self.enabled : return nb, other else : return super(ActivatableTransformer, self).__call__(nb, other) def cell_preprocessor(function): """ wrap a function to be executed on all cells of a notebook wrapped function parameters : cell : the cell other : external resources index : index of the cell """ def wrappedfunc(nb, other): for worksheet in nb.worksheets : for index, cell in enumerate(worksheet.cells): worksheet.cells[index], other = function(cell, other, index) return nb, other return wrappedfunc @cell_preprocessor def haspyout_transformer(cell, other, count): """ Add a haspyout flag to cell that have it Easier for templating, where you can't know in advance wether to write the out prompt """ cell.type = cell.cell_type cell.haspyout = False for out in cell.get('outputs', []): if out.output_type == 'pyout': cell.haspyout = True break return cell, other @cell_preprocessor def coalesce_streams(cell, other, count): """merge consecutive sequences of stream output into single stream to prevent extra newlines inserted at flush calls TODO: handle \r deletion """ outputs = cell.get('outputs', []) if not outputs: return cell, other new_outputs = [] last = outputs[0] new_outputs = [last] for output in outputs[1:]: if (output.output_type == 'stream' and last.output_type == 'stream' and last.stream == output.stream ): last.text += output.text else: new_outputs.append(output) cell.outputs = new_outputs return cell, other class ExtractFigureTransformer(ActivatableTransformer): extra_ext_map = Dict({}, config=True, help="""extra map to override extension based on type. Usefull for latex where svg will be converted to pdf before inclusion """ ) key_format_map = Dict({}, config=True, ) figname_format_map = Dict({}, config=True, ) #to do change this to .format {} syntax default_key_tpl = Unicode('_fig_{count:02d}.{ext}', config=True) def _get_ext(self, ext): if ext in self.extra_ext_map : return self.extra_ext_map[ext] return ext def _new_figure(self, data, fmt, count): """Create a new figure file in the given format. """ tplf = self.figname_format_map.get(fmt, self.default_key_tpl) tplk = self.key_format_map.get(fmt, self.default_key_tpl) # option to pass the hash as data ? figname = tplf.format(count=count, ext=self._get_ext(fmt)) key = tplk.format(count=count, ext=self._get_ext(fmt)) # Binary files are base64-encoded, SVG is already XML if fmt in ('png', 'jpg', 'pdf'): data = data.decode('base64') return figname, key, data def cell_transform(self, cell, other, count): if other.get('figures', None) is None : other['figures'] = {} for out in cell.get('outputs', []): for out_type in self.display_data_priority: if out.hasattr(out_type): figname, key, data = self._new_figure(out[out_type], out_type, count) out['key_'+out_type] = figname other['figures'][key] = data count = count+1 return cell, other class RevealHelpTransformer(ConfigurableTransformers): def __call__(self, nb, other): for worksheet in nb.worksheets : for i, cell in enumerate(worksheet.cells): cell.metadata.slide_type = cell.metadata.get('slideshow', {}).get('slide_type', None) if cell.metadata.slide_type is None: cell.metadata.slide_type = '-' if cell.metadata.slide_type in ['slide']: worksheet.cells[i - 1].metadata.slide_helper = 'slide_end' if cell.metadata.slide_type in ['subslide']: worksheet.cells[i - 1].metadata.slide_helper = 'subslide_end' return nb, other class CSSHtmlHeaderTransformer(ActivatableTransformer): def __call__(self, nb, resources): """Fetch and add css to the resource dict Fetch css from IPython adn Pygment to add at the beginning of the html files. Add this css in resources in the "inlining.css" key """ resources['inlining'] = {} resources['inlining']['css'] = self.header return nb, resources header = [] def __init__(self, config=None, **kw): super(CSSHtmlHeaderTransformer, self).__init__(config=config, **kw) if self.enabled : self.regen_header() def regen_header(self): ## lazy load asa this might not be use in many transformers import os from IPython.utils import path import io from pygments.formatters import HtmlFormatter header = [] static = os.path.join(path.get_ipython_package_dir(), 'frontend', 'html', 'notebook', 'static', ) here = os.path.split(os.path.realpath(__file__))[0] css = os.path.join(static, 'css') for sheet in [ # do we need jquery and prettify? # os.path.join(static, 'jquery', 'css', 'themes', 'base', # 'jquery-ui.min.css'), # os.path.join(static, 'prettify', 'prettify.css'), os.path.join(css, 'boilerplate.css'), os.path.join(css, 'fbm.css'), os.path.join(css, 'notebook.css'), os.path.join(css, 'renderedhtml.css'), os.path.join(css, 'style.min.css'), ]: try: with io.open(sheet, encoding='utf-8') as f: s = f.read() header.append(s) except IOError: # new version of ipython with style.min.css, pass pass pygments_css = HtmlFormatter().get_style_defs('.highlight') header.append(pygments_css) self.header = header