# encoding: utf-8 """Magic functions for InteractiveShell. """ #----------------------------------------------------------------------------- # Copyright (C) 2001 Janko Hauser and # Copyright (C) 2001-2007 Fernando Perez # Copyright (C) 2008-2011 The IPython Development Team # Distributed under the terms of the BSD License. The full license is in # the file COPYING, distributed as part of this software. #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- import __builtin__ as builtin_mod import __future__ import bdb import inspect import io import json import os import sys import re import time import gc from StringIO import StringIO from getopt import getopt,GetoptError from pprint import pformat from urllib2 import urlopen # cProfile was added in Python2.5 try: import cProfile as profile import pstats except ImportError: # profile isn't bundled by default in Debian for license reasons try: import profile,pstats except ImportError: profile = pstats = None from IPython.core import debugger, oinspect from IPython.core.error import TryNext from IPython.core.error import UsageError from IPython.core.error import StdinNotImplementedError from IPython.core.macro import Macro from IPython.core import magic_arguments, page from IPython.core.prefilter import ESC_MAGIC from IPython.testing.skipdoctest import skip_doctest from IPython.utils import py3compat from IPython.utils.encoding import DEFAULT_ENCODING from IPython.utils.io import file_read, nlprint from IPython.utils.module_paths import find_mod from IPython.utils.path import get_py_filename, unquote_filename from IPython.utils.process import arg_split, abbrev_cwd from IPython.utils.terminal import set_term_title from IPython.utils.text import format_screen from IPython.utils.timing import clock, clock2 from IPython.utils.warn import warn, error from IPython.utils.ipstruct import Struct from IPython.config.application import Application #----------------------------------------------------------------------------- # Utility functions #----------------------------------------------------------------------------- def on_off(tag): """Return an ON/OFF string for a 1/0 input. Simple utility function.""" return ['OFF','ON'][tag] class Bunch: pass def compress_dhist(dh): head, tail = dh[:-10], dh[-10:] newhead = [] done = set() for h in head: if h in done: continue newhead.append(h) done.add(h) return newhead + tail def needs_local_scope(func): """Decorator to mark magic functions which need to local scope to run.""" func.needs_local_scope = True return func # Used for exception handling in magic_edit class MacroToEdit(ValueError): pass #*************************************************************************** # Main class implementing Magic functionality # XXX - for some odd reason, if Magic is made a new-style class, we get errors # on construction of the main InteractiveShell object. Something odd is going # on with super() calls, Configurable and the MRO... For now leave it as-is, but # eventually this needs to be clarified. # BG: This is because InteractiveShell inherits from this, but is itself a # Configurable. This messes up the MRO in some way. The fix is that we need to # make Magic a configurable that InteractiveShell does not subclass. class Magic(object): """Magic functions for InteractiveShell. Shell functions which can be reached as %function_name. All magic functions should accept a string, which they can parse for their own needs. This can make some functions easier to type, eg `%cd ../` vs. `%cd("../")` ALL definitions MUST begin with the prefix magic_. The user won't need it at the command line, but it is is needed in the definition. """ # class globals auto_status = ['Automagic is OFF, % prefix IS needed for magic functions.', 'Automagic is ON, % prefix NOT needed for magic functions.'] configurables = None default_runner = None #...................................................................... # some utility functions def __init__(self, shell): self.options_table = {} if profile is None: self.magic_prun = self.profile_missing_notice self.shell = shell if self.configurables is None: self.configurables = [] # namespace for holding state we may need self._magic_state = Bunch() def profile_missing_notice(self, *args, **kwargs): error("""\ The profile module could not be found. It has been removed from the standard python packages because of its non-free license. To use profiling, install the python-profiler package from non-free.""") def default_option(self,fn,optstr): """Make an entry in the options_table for fn, with value optstr""" if fn not in self.lsmagic(): error("%s is not a magic function" % fn) self.options_table[fn] = optstr def lsmagic(self): """Return a list of currently available magic functions. Gives a list of the bare names after mangling (['ls','cd', ...], not ['magic_ls','magic_cd',...]""" # FIXME. This needs a cleanup, in the way the magics list is built. # magics in class definition class_magic = lambda fn: fn.startswith('magic_') and \ callable(Magic.__dict__[fn]) # in instance namespace (run-time user additions) inst_magic = lambda fn: fn.startswith('magic_') and \ callable(self.__dict__[fn]) # and bound magics by user (so they can access self): inst_bound_magic = lambda fn: fn.startswith('magic_') and \ callable(self.__class__.__dict__[fn]) magics = filter(class_magic,Magic.__dict__.keys()) + \ filter(inst_magic, self.__dict__.keys()) + \ filter(inst_bound_magic, self.__class__.__dict__.keys()) out = [] for fn in set(magics): out.append(fn.replace('magic_','',1)) out.sort() return out def arg_err(self,func): """Print docstring if incorrect arguments were passed""" print 'Error in arguments:' print oinspect.getdoc(func) def format_latex(self,strng): """Format a string for latex inclusion.""" # Characters that need to be escaped for latex: escape_re = re.compile(r'(%|_|\$|#|&)',re.MULTILINE) # Magic command names as headers: cmd_name_re = re.compile(r'^(%s.*?):' % ESC_MAGIC, re.MULTILINE) # Magic commands cmd_re = re.compile(r'(?P%s.+?\b)(?!\}\}:)' % ESC_MAGIC, re.MULTILINE) # Paragraph continue par_re = re.compile(r'\\$',re.MULTILINE) # The "\n" symbol newline_re = re.compile(r'\\n') # Now build the string for output: #strng = cmd_name_re.sub(r'\n\\texttt{\\textsl{\\large \1}}:',strng) strng = cmd_name_re.sub(r'\n\\bigskip\n\\texttt{\\textbf{ \1}}:', strng) strng = cmd_re.sub(r'\\texttt{\g}',strng) strng = par_re.sub(r'\\\\',strng) strng = escape_re.sub(r'\\\1',strng) strng = newline_re.sub(r'\\textbackslash{}n',strng) return strng def parse_options(self,arg_str,opt_str,*long_opts,**kw): """Parse options passed to an argument string. The interface is similar to that of getopt(), but it returns back a Struct with the options as keys and the stripped argument string still as a string. arg_str is quoted as a true sys.argv vector by using shlex.split. This allows us to easily expand variables, glob files, quote arguments, etc. Options: -mode: default 'string'. If given as 'list', the argument string is returned as a list (split on whitespace) instead of a string. -list_all: put all option values in lists. Normally only options appearing more than once are put in a list. -posix (True): whether to split the input line in POSIX mode or not, as per the conventions outlined in the shlex module from the standard library.""" # inject default options at the beginning of the input line caller = sys._getframe(1).f_code.co_name.replace('magic_','') arg_str = '%s %s' % (self.options_table.get(caller,''),arg_str) mode = kw.get('mode','string') if mode not in ['string','list']: raise ValueError,'incorrect mode given: %s' % mode # Get options list_all = kw.get('list_all',0) posix = kw.get('posix', os.name == 'posix') strict = kw.get('strict', True) # Check if we have more than one argument to warrant extra processing: odict = {} # Dictionary with options args = arg_str.split() if len(args) >= 1: # If the list of inputs only has 0 or 1 thing in it, there's no # need to look for options argv = arg_split(arg_str, posix, strict) # Do regular option processing try: opts,args = getopt(argv,opt_str,*long_opts) except GetoptError,e: raise UsageError('%s ( allowed: "%s" %s)' % (e.msg,opt_str, " ".join(long_opts))) for o,a in opts: if o.startswith('--'): o = o[2:] else: o = o[1:] try: odict[o].append(a) except AttributeError: odict[o] = [odict[o],a] except KeyError: if list_all: odict[o] = [a] else: odict[o] = a # Prepare opts,args for return opts = Struct(odict) if mode == 'string': args = ' '.join(args) return opts,args #...................................................................... # And now the actual magic functions # Functions for IPython shell work (vars,funcs, config, etc) def magic_lsmagic(self, parameter_s = ''): """List currently available magic functions.""" mesc = ESC_MAGIC print 'Available magic functions:\n'+mesc+\ (' '+mesc).join(self.lsmagic()) print '\n' + Magic.auto_status[self.shell.automagic] return None def magic_magic(self, parameter_s = ''): """Print information about the magic function system. Supported formats: -latex, -brief, -rest """ mode = '' try: if parameter_s.split()[0] == '-latex': mode = 'latex' if parameter_s.split()[0] == '-brief': mode = 'brief' if parameter_s.split()[0] == '-rest': mode = 'rest' rest_docs = [] except: pass magic_docs = [] for fname in self.lsmagic(): mname = 'magic_' + fname for space in (Magic, self, self.__class__): try: fn = space.__dict__[mname] except KeyError: pass else: break if mode == 'brief': # only first line if fn.__doc__: fndoc = fn.__doc__.split('\n',1)[0] else: fndoc = 'No documentation' else: if fn.__doc__: fndoc = fn.__doc__.rstrip() else: fndoc = 'No documentation' if mode == 'rest': rest_docs.append('**%s%s**::\n\n\t%s\n\n' %(ESC_MAGIC, fname,fndoc)) else: magic_docs.append('%s%s:\n\t%s\n' %(ESC_MAGIC, fname,fndoc)) magic_docs = ''.join(magic_docs) if mode == 'rest': return "".join(rest_docs) if mode == 'latex': print self.format_latex(magic_docs) return else: magic_docs = format_screen(magic_docs) if mode == 'brief': return magic_docs outmsg = """ IPython's 'magic' functions =========================== The magic function system provides a series of functions which allow you to control the behavior of IPython itself, plus a lot of system-type features. All these functions are prefixed with a % character, but parameters are given without parentheses or quotes. NOTE: If you have 'automagic' enabled (via the command line option or with the %automagic function), you don't need to type in the % explicitly. By default, IPython ships with automagic on, so you should only rarely need the % escape. Example: typing '%cd mydir' (without the quotes) changes you working directory to 'mydir', if it exists. For a list of the available magic functions, use %lsmagic. For a description of any of them, type %magic_name?, e.g. '%cd?'. Currently the magic system has the following functions:\n""" mesc = ESC_MAGIC outmsg = ("%s\n%s\n\nSummary of magic functions (from %slsmagic):" "\n\n%s%s\n\n%s" % (outmsg, magic_docs,mesc,mesc, (' '+mesc).join(self.lsmagic()), Magic.auto_status[self.shell.automagic] ) ) page.page(outmsg) def magic_automagic(self, parameter_s = ''): """Make magic functions callable without having to type the initial %. Without argumentsl toggles on/off (when off, you must call it as %automagic, of course). With arguments it sets the value, and you can use any of (case insensitive): - on,1,True: to activate - off,0,False: to deactivate. Note that magic functions have lowest priority, so if there's a variable whose name collides with that of a magic fn, automagic won't work for that function (you get the variable instead). However, if you delete the variable (del var), the previously shadowed magic function becomes visible to automagic again.""" arg = parameter_s.lower() if parameter_s in ('on','1','true'): self.shell.automagic = True elif parameter_s in ('off','0','false'): self.shell.automagic = False else: self.shell.automagic = not self.shell.automagic print '\n' + Magic.auto_status[self.shell.automagic] @skip_doctest def magic_autocall(self, parameter_s = ''): """Make functions callable without having to type parentheses. Usage: %autocall [mode] The mode can be one of: 0->Off, 1->Smart, 2->Full. If not given, the value is toggled on and off (remembering the previous state). In more detail, these values mean: 0 -> fully disabled 1 -> active, but do not apply if there are no arguments on the line. In this mode, you get:: In [1]: callable Out[1]: In [2]: callable 'hello' ------> callable('hello') Out[2]: False 2 -> Active always. Even if no arguments are present, the callable object is called:: In [2]: float ------> float() Out[2]: 0.0 Note that even with autocall off, you can still use '/' at the start of a line to treat the first argument on the command line as a function and add parentheses to it:: In [8]: /str 43 ------> str(43) Out[8]: '43' # all-random (note for auto-testing) """ if parameter_s: arg = int(parameter_s) else: arg = 'toggle' if not arg in (0,1,2,'toggle'): error('Valid modes: (0->Off, 1->Smart, 2->Full') return if arg in (0,1,2): self.shell.autocall = arg else: # toggle if self.shell.autocall: self._magic_state.autocall_save = self.shell.autocall self.shell.autocall = 0 else: try: self.shell.autocall = self._magic_state.autocall_save except AttributeError: self.shell.autocall = self._magic_state.autocall_save = 1 print "Automatic calling is:",['OFF','Smart','Full'][self.shell.autocall] def magic_page(self, parameter_s=''): """Pretty print the object and display it through a pager. %page [options] OBJECT If no object is given, use _ (last output). Options: -r: page str(object), don't pretty-print it.""" # After a function contributed by Olivier Aubert, slightly modified. # Process options/args opts,args = self.parse_options(parameter_s,'r') raw = 'r' in opts oname = args and args or '_' info = self._ofind(oname) if info['found']: txt = (raw and str or pformat)( info['obj'] ) page.page(txt) else: print 'Object `%s` not found' % oname def magic_profile(self, parameter_s=''): """Print your currently active IPython profile.""" from IPython.core.application import BaseIPythonApplication if BaseIPythonApplication.initialized(): print BaseIPythonApplication.instance().profile else: error("profile is an application-level value, but you don't appear to be in an IPython application") def magic_pinfo(self, parameter_s='', namespaces=None): """Provide detailed information about an object. '%pinfo object' is just a synonym for object? or ?object.""" #print 'pinfo par: <%s>' % parameter_s # dbg # detail_level: 0 -> obj? , 1 -> obj?? detail_level = 0 # We need to detect if we got called as 'pinfo pinfo foo', which can # happen if the user types 'pinfo foo?' at the cmd line. pinfo,qmark1,oname,qmark2 = \ re.match('(pinfo )?(\?*)(.*?)(\??$)',parameter_s).groups() if pinfo or qmark1 or qmark2: detail_level = 1 if "*" in oname: self.magic_psearch(oname) else: self.shell._inspect('pinfo', oname, detail_level=detail_level, namespaces=namespaces) def magic_pinfo2(self, parameter_s='', namespaces=None): """Provide extra detailed information about an object. '%pinfo2 object' is just a synonym for object?? or ??object.""" self.shell._inspect('pinfo', parameter_s, detail_level=1, namespaces=namespaces) @skip_doctest def magic_pdef(self, parameter_s='', namespaces=None): """Print the definition header for any callable object. If the object is a class, print the constructor information. Examples -------- :: In [3]: %pdef urllib.urlopen urllib.urlopen(url, data=None, proxies=None) """ self._inspect('pdef',parameter_s, namespaces) def magic_pdoc(self, parameter_s='', namespaces=None): """Print the docstring for an object. If the given object is a class, it will print both the class and the constructor docstrings.""" self._inspect('pdoc',parameter_s, namespaces) def magic_psource(self, parameter_s='', namespaces=None): """Print (or run through pager) the source code for an object.""" self._inspect('psource',parameter_s, namespaces) def magic_pfile(self, parameter_s=''): """Print (or run through pager) the file where an object is defined. The file opens at the line where the object definition begins. IPython will honor the environment variable PAGER if set, and otherwise will do its best to print the file in a convenient form. If the given argument is not an object currently defined, IPython will try to interpret it as a filename (automatically adding a .py extension if needed). You can thus use %pfile as a syntax highlighting code viewer.""" # first interpret argument as an object name out = self._inspect('pfile',parameter_s) # if not, try the input as a filename if out == 'not found': try: filename = get_py_filename(parameter_s) except IOError,msg: print msg return page.page(self.shell.inspector.format(open(filename).read())) def magic_psearch(self, parameter_s=''): """Search for object in namespaces by wildcard. %psearch [options] PATTERN [OBJECT TYPE] Note: ? can be used as a synonym for %psearch, at the beginning or at the end: both a*? and ?a* are equivalent to '%psearch a*'. Still, the rest of the command line must be unchanged (options come first), so for example the following forms are equivalent %psearch -i a* function -i a* function? ?-i a* function Arguments: PATTERN where PATTERN is a string containing * as a wildcard similar to its use in a shell. The pattern is matched in all namespaces on the search path. By default objects starting with a single _ are not matched, many IPython generated objects have a single underscore. The default is case insensitive matching. Matching is also done on the attributes of objects and not only on the objects in a module. [OBJECT TYPE] Is the name of a python type from the types module. The name is given in lowercase without the ending type, ex. StringType is written string. By adding a type here only objects matching the given type are matched. Using all here makes the pattern match all types (this is the default). Options: -a: makes the pattern match even objects whose names start with a single underscore. These names are normally omitted from the search. -i/-c: make the pattern case insensitive/sensitive. If neither of these options are given, the default is read from your configuration file, with the option ``InteractiveShell.wildcards_case_sensitive``. If this option is not specified in your configuration file, IPython's internal default is to do a case sensitive search. -e/-s NAMESPACE: exclude/search a given namespace. The pattern you specify can be searched in any of the following namespaces: 'builtin', 'user', 'user_global','internal', 'alias', where 'builtin' and 'user' are the search defaults. Note that you should not use quotes when specifying namespaces. 'Builtin' contains the python module builtin, 'user' contains all user data, 'alias' only contain the shell aliases and no python objects, 'internal' contains objects used by IPython. The 'user_global' namespace is only used by embedded IPython instances, and it contains module-level globals. You can add namespaces to the search with -s or exclude them with -e (these options can be given more than once). Examples -------- :: %psearch a* -> objects beginning with an a %psearch -e builtin a* -> objects NOT in the builtin space starting in a %psearch a* function -> all functions beginning with an a %psearch re.e* -> objects beginning with an e in module re %psearch r*.e* -> objects that start with e in modules starting in r %psearch r*.* string -> all strings in modules beginning with r Case sensitive search:: %psearch -c a* list all object beginning with lower case a Show objects beginning with a single _:: %psearch -a _* list objects beginning with a single underscore""" try: parameter_s.encode('ascii') except UnicodeEncodeError: print 'Python identifiers can only contain ascii characters.' return # default namespaces to be searched def_search = ['user_local', 'user_global', 'builtin'] # Process options/args opts,args = self.parse_options(parameter_s,'cias:e:',list_all=True) opt = opts.get shell = self.shell psearch = shell.inspector.psearch # select case options if opts.has_key('i'): ignore_case = True elif opts.has_key('c'): ignore_case = False else: ignore_case = not shell.wildcards_case_sensitive # Build list of namespaces to search from user options def_search.extend(opt('s',[])) ns_exclude = ns_exclude=opt('e',[]) ns_search = [nm for nm in def_search if nm not in ns_exclude] # Call the actual search try: psearch(args,shell.ns_table,ns_search, show_all=opt('a'),ignore_case=ignore_case) except: shell.showtraceback() @skip_doctest def magic_who_ls(self, parameter_s=''): """Return a sorted list of all interactive variables. If arguments are given, only variables of types matching these arguments are returned. Examples -------- Define two variables and list them with who_ls:: In [1]: alpha = 123 In [2]: beta = 'test' In [3]: %who_ls Out[3]: ['alpha', 'beta'] In [4]: %who_ls int Out[4]: ['alpha'] In [5]: %who_ls str Out[5]: ['beta'] """ user_ns = self.shell.user_ns user_ns_hidden = self.shell.user_ns_hidden out = [ i for i in user_ns if not i.startswith('_') \ and not i in user_ns_hidden ] typelist = parameter_s.split() if typelist: typeset = set(typelist) out = [i for i in out if type(user_ns[i]).__name__ in typeset] out.sort() return out @skip_doctest def magic_who(self, parameter_s=''): """Print all interactive variables, with some minimal formatting. If any arguments are given, only variables whose type matches one of these are printed. For example:: %who function str will only list functions and strings, excluding all other types of variables. To find the proper type names, simply use type(var) at a command line to see how python prints type names. For example: :: In [1]: type('hello')\\ Out[1]: indicates that the type name for strings is 'str'. ``%who`` always excludes executed names loaded through your configuration file and things which are internal to IPython. This is deliberate, as typically you may load many modules and the purpose of %who is to show you only what you've manually defined. Examples -------- Define two variables and list them with who:: In [1]: alpha = 123 In [2]: beta = 'test' In [3]: %who alpha beta In [4]: %who int alpha In [5]: %who str beta """ varlist = self.magic_who_ls(parameter_s) if not varlist: if parameter_s: print 'No variables match your requested type.' else: print 'Interactive namespace is empty.' return # if we have variables, move on... count = 0 for i in varlist: print i+'\t', count += 1 if count > 8: count = 0 print print @skip_doctest def magic_whos(self, parameter_s=''): """Like %who, but gives some extra information about each variable. The same type filtering of %who can be applied here. For all variables, the type is printed. Additionally it prints: - For {},[],(): their length. - For numpy arrays, a summary with shape, number of elements, typecode and size in memory. - Everything else: a string representation, snipping their middle if too long. Examples -------- Define two variables and list them with whos:: In [1]: alpha = 123 In [2]: beta = 'test' In [3]: %whos Variable Type Data/Info -------------------------------- alpha int 123 beta str test """ varnames = self.magic_who_ls(parameter_s) if not varnames: if parameter_s: print 'No variables match your requested type.' else: print 'Interactive namespace is empty.' return # if we have variables, move on... # for these types, show len() instead of data: seq_types = ['dict', 'list', 'tuple'] # for numpy arrays, display summary info ndarray_type = None if 'numpy' in sys.modules: try: from numpy import ndarray except ImportError: pass else: ndarray_type = ndarray.__name__ # Find all variable names and types so we can figure out column sizes def get_vars(i): return self.shell.user_ns[i] # some types are well known and can be shorter abbrevs = {'IPython.core.macro.Macro' : 'Macro'} def type_name(v): tn = type(v).__name__ return abbrevs.get(tn,tn) varlist = map(get_vars,varnames) typelist = [] for vv in varlist: tt = type_name(vv) if tt=='instance': typelist.append( abbrevs.get(str(vv.__class__), str(vv.__class__))) else: typelist.append(tt) # column labels and # of spaces as separator varlabel = 'Variable' typelabel = 'Type' datalabel = 'Data/Info' colsep = 3 # variable format strings vformat = "{0:<{varwidth}}{1:<{typewidth}}" aformat = "%s: %s elems, type `%s`, %s bytes" # find the size of the columns to format the output nicely varwidth = max(max(map(len,varnames)), len(varlabel)) + colsep typewidth = max(max(map(len,typelist)), len(typelabel)) + colsep # table header print varlabel.ljust(varwidth) + typelabel.ljust(typewidth) + \ ' '+datalabel+'\n' + '-'*(varwidth+typewidth+len(datalabel)+1) # and the table itself kb = 1024 Mb = 1048576 # kb**2 for vname,var,vtype in zip(varnames,varlist,typelist): print vformat.format(vname, vtype, varwidth=varwidth, typewidth=typewidth), if vtype in seq_types: print "n="+str(len(var)) elif vtype == ndarray_type: vshape = str(var.shape).replace(',','').replace(' ','x')[1:-1] if vtype==ndarray_type: # numpy vsize = var.size vbytes = vsize*var.itemsize vdtype = var.dtype if vbytes < 100000: print aformat % (vshape,vsize,vdtype,vbytes) else: print aformat % (vshape,vsize,vdtype,vbytes), if vbytes < Mb: print '(%s kb)' % (vbytes/kb,) else: print '(%s Mb)' % (vbytes/Mb,) else: try: vstr = str(var) except UnicodeEncodeError: vstr = unicode(var).encode(DEFAULT_ENCODING, 'backslashreplace') except: vstr = "" % id(var) vstr = vstr.replace('\n','\\n') if len(vstr) < 50: print vstr else: print vstr[:25] + "<...>" + vstr[-25:] def magic_reset(self, parameter_s=''): """Resets the namespace by removing all names defined by the user, if called without arguments, or by removing some types of objects, such as everything currently in IPython's In[] and Out[] containers (see the parameters for details). Parameters ---------- -f : force reset without asking for confirmation. -s : 'Soft' reset: Only clears your namespace, leaving history intact. References to objects may be kept. By default (without this option), we do a 'hard' reset, giving you a new session and removing all references to objects from the current session. in : reset input history out : reset output history dhist : reset directory history array : reset only variables that are NumPy arrays See Also -------- magic_reset_selective : invoked as ``%reset_selective`` Examples -------- :: In [6]: a = 1 In [7]: a Out[7]: 1 In [8]: 'a' in _ip.user_ns Out[8]: True In [9]: %reset -f In [1]: 'a' in _ip.user_ns Out[1]: False In [2]: %reset -f in Flushing input history In [3]: %reset -f dhist in Flushing directory history Flushing input history Notes ----- Calling this magic from clients that do not implement standard input, such as the ipython notebook interface, will reset the namespace without confirmation. """ opts, args = self.parse_options(parameter_s,'sf', mode='list') if 'f' in opts: ans = True else: try: ans = self.shell.ask_yes_no( "Once deleted, variables cannot be recovered. Proceed (y/[n])? ", default='n') except StdinNotImplementedError: ans = True if not ans: print 'Nothing done.' return if 's' in opts: # Soft reset user_ns = self.shell.user_ns for i in self.magic_who_ls(): del(user_ns[i]) elif len(args) == 0: # Hard reset self.shell.reset(new_session = False) # reset in/out/dhist/array: previously extensinions/clearcmd.py ip = self.shell user_ns = self.shell.user_ns # local lookup, heavily used for target in args: target = target.lower() # make matches case insensitive if target == 'out': print "Flushing output cache (%d entries)" % len(user_ns['_oh']) self.shell.displayhook.flush() elif target == 'in': print "Flushing input history" pc = self.shell.displayhook.prompt_count + 1 for n in range(1, pc): key = '_i'+repr(n) user_ns.pop(key,None) user_ns.update(dict(_i=u'',_ii=u'',_iii=u'')) hm = ip.history_manager # don't delete these, as %save and %macro depending on the length # of these lists to be preserved hm.input_hist_parsed[:] = [''] * pc hm.input_hist_raw[:] = [''] * pc # hm has internal machinery for _i,_ii,_iii, clear it out hm._i = hm._ii = hm._iii = hm._i00 = u'' elif target == 'array': # Support cleaning up numpy arrays try: from numpy import ndarray # This must be done with items and not iteritems because we're # going to modify the dict in-place. for x,val in user_ns.items(): if isinstance(val,ndarray): del user_ns[x] except ImportError: print "reset array only works if Numpy is available." elif target == 'dhist': print "Flushing directory history" del user_ns['_dh'][:] else: print "Don't know how to reset ", print target + ", please run `%reset?` for details" gc.collect() def magic_reset_selective(self, parameter_s=''): """Resets the namespace by removing names defined by the user. Input/Output history are left around in case you need them. %reset_selective [-f] regex No action is taken if regex is not included Options -f : force reset without asking for confirmation. See Also -------- magic_reset : invoked as ``%reset`` Examples -------- We first fully reset the namespace so your output looks identical to this example for pedagogical reasons; in practice you do not need a full reset:: In [1]: %reset -f Now, with a clean namespace we can make a few variables and use ``%reset_selective`` to only delete names that match our regexp:: In [2]: a=1; b=2; c=3; b1m=4; b2m=5; b3m=6; b4m=7; b2s=8 In [3]: who_ls Out[3]: ['a', 'b', 'b1m', 'b2m', 'b2s', 'b3m', 'b4m', 'c'] In [4]: %reset_selective -f b[2-3]m In [5]: who_ls Out[5]: ['a', 'b', 'b1m', 'b2s', 'b4m', 'c'] In [6]: %reset_selective -f d In [7]: who_ls Out[7]: ['a', 'b', 'b1m', 'b2s', 'b4m', 'c'] In [8]: %reset_selective -f c In [9]: who_ls Out[9]: ['a', 'b', 'b1m', 'b2s', 'b4m'] In [10]: %reset_selective -f b In [11]: who_ls Out[11]: ['a'] Notes ----- Calling this magic from clients that do not implement standard input, such as the ipython notebook interface, will reset the namespace without confirmation. """ opts, regex = self.parse_options(parameter_s,'f') if opts.has_key('f'): ans = True else: try: ans = self.shell.ask_yes_no( "Once deleted, variables cannot be recovered. Proceed (y/[n])? ", default='n') except StdinNotImplementedError: ans = True if not ans: print 'Nothing done.' return user_ns = self.shell.user_ns if not regex: print 'No regex pattern specified. Nothing done.' return else: try: m = re.compile(regex) except TypeError: raise TypeError('regex must be a string or compiled pattern') for i in self.magic_who_ls(): if m.search(i): del(user_ns[i]) def magic_xdel(self, parameter_s=''): """Delete a variable, trying to clear it from anywhere that IPython's machinery has references to it. By default, this uses the identity of the named object in the user namespace to remove references held under other names. The object is also removed from the output history. Options -n : Delete the specified name from all namespaces, without checking their identity. """ opts, varname = self.parse_options(parameter_s,'n') try: self.shell.del_var(varname, ('n' in opts)) except (NameError, ValueError) as e: print type(e).__name__ +": "+ str(e) def magic_logstart(self,parameter_s=''): """Start logging anywhere in a session. %logstart [-o|-r|-t] [log_name [log_mode]] If no name is given, it defaults to a file named 'ipython_log.py' in your current directory, in 'rotate' mode (see below). '%logstart name' saves to file 'name' in 'backup' mode. It saves your history up to that point and then continues logging. %logstart takes a second optional parameter: logging mode. This can be one of (note that the modes are given unquoted):\\ append: well, that says it.\\ backup: rename (if exists) to name~ and start name.\\ global: single logfile in your home dir, appended to.\\ over : overwrite existing log.\\ rotate: create rotating logs name.1~, name.2~, etc. Options: -o: log also IPython's output. In this mode, all commands which generate an Out[NN] prompt are recorded to the logfile, right after their corresponding input line. The output lines are always prepended with a '#[Out]# ' marker, so that the log remains valid Python code. Since this marker is always the same, filtering only the output from a log is very easy, using for example a simple awk call:: awk -F'#\\[Out\\]# ' '{if($2) {print $2}}' ipython_log.py -r: log 'raw' input. Normally, IPython's logs contain the processed input, so that user lines are logged in their final form, converted into valid Python. For example, %Exit is logged as _ip.magic("Exit"). If the -r flag is given, all input is logged exactly as typed, with no transformations applied. -t: put timestamps before each input line logged (these are put in comments).""" opts,par = self.parse_options(parameter_s,'ort') log_output = 'o' in opts log_raw_input = 'r' in opts timestamp = 't' in opts logger = self.shell.logger # if no args are given, the defaults set in the logger constructor by # ipython remain valid if par: try: logfname,logmode = par.split() except: logfname = par logmode = 'backup' else: logfname = logger.logfname logmode = logger.logmode # put logfname into rc struct as if it had been called on the command # line, so it ends up saved in the log header Save it in case we need # to restore it... old_logfile = self.shell.logfile if logfname: logfname = os.path.expanduser(logfname) self.shell.logfile = logfname loghead = '# IPython log file\n\n' try: started = logger.logstart(logfname,loghead,logmode, log_output,timestamp,log_raw_input) except: self.shell.logfile = old_logfile warn("Couldn't start log: %s" % sys.exc_info()[1]) else: # log input history up to this point, optionally interleaving # output if requested if timestamp: # disable timestamping for the previous history, since we've # lost those already (no time machine here). logger.timestamp = False if log_raw_input: input_hist = self.shell.history_manager.input_hist_raw else: input_hist = self.shell.history_manager.input_hist_parsed if log_output: log_write = logger.log_write output_hist = self.shell.history_manager.output_hist for n in range(1,len(input_hist)-1): log_write(input_hist[n].rstrip() + '\n') if n in output_hist: log_write(repr(output_hist[n]),'output') else: logger.log_write('\n'.join(input_hist[1:])) logger.log_write('\n') if timestamp: # re-enable timestamping logger.timestamp = True print ('Activating auto-logging. ' 'Current session state plus future input saved.') logger.logstate() def magic_logstop(self,parameter_s=''): """Fully stop logging and close log file. In order to start logging again, a new %logstart call needs to be made, possibly (though not necessarily) with a new filename, mode and other options.""" self.logger.logstop() def magic_logoff(self,parameter_s=''): """Temporarily stop logging. You must have previously started logging.""" self.shell.logger.switch_log(0) def magic_logon(self,parameter_s=''): """Restart logging. This function is for restarting logging which you've temporarily stopped with %logoff. For starting logging for the first time, you must use the %logstart function, which allows you to specify an optional log filename.""" self.shell.logger.switch_log(1) def magic_logstate(self,parameter_s=''): """Print the status of the logging system.""" self.shell.logger.logstate() def magic_pdb(self, parameter_s=''): """Control the automatic calling of the pdb interactive debugger. Call as '%pdb on', '%pdb 1', '%pdb off' or '%pdb 0'. If called without argument it works as a toggle. When an exception is triggered, IPython can optionally call the interactive pdb debugger after the traceback printout. %pdb toggles this feature on and off. The initial state of this feature is set in your configuration file (the option is ``InteractiveShell.pdb``). If you want to just activate the debugger AFTER an exception has fired, without having to type '%pdb on' and rerunning your code, you can use the %debug magic.""" par = parameter_s.strip().lower() if par: try: new_pdb = {'off':0,'0':0,'on':1,'1':1}[par] except KeyError: print ('Incorrect argument. Use on/1, off/0, ' 'or nothing for a toggle.') return else: # toggle new_pdb = not self.shell.call_pdb # set on the shell self.shell.call_pdb = new_pdb print 'Automatic pdb calling has been turned',on_off(new_pdb) def magic_debug(self, parameter_s=''): """Activate the interactive debugger in post-mortem mode. If an exception has just occurred, this lets you inspect its stack frames interactively. Note that this will always work only on the last traceback that occurred, so you must call this quickly after an exception that you wish to inspect has fired, because if another one occurs, it clobbers the previous one. If you want IPython to automatically do this on every exception, see the %pdb magic for more details. """ self.shell.debugger(force=True) @skip_doctest def magic_prun(self, parameter_s ='',user_mode=1, opts=None,arg_lst=None,prog_ns=None): """Run a statement through the python code profiler. Usage: %prun [options] statement The given statement (which doesn't require quote marks) is run via the python profiler in a manner similar to the profile.run() function. Namespaces are internally managed to work correctly; profile.run cannot be used in IPython because it makes certain assumptions about namespaces which do not hold under IPython. Options: -l : you can place restrictions on what or how much of the profile gets printed. The limit value can be: * A string: only information for function names containing this string is printed. * An integer: only these many lines are printed. * A float (between 0 and 1): this fraction of the report is printed (for example, use a limit of 0.4 to see the topmost 40% only). You can combine several limits with repeated use of the option. For example, '-l __init__ -l 5' will print only the topmost 5 lines of information about class constructors. -r: return the pstats.Stats object generated by the profiling. This object has all the information about the profile in it, and you can later use it for further analysis or in other functions. -s : sort profile by given key. You can provide more than one key by using the option several times: '-s key1 -s key2 -s key3...'. The default sorting key is 'time'. The following is copied verbatim from the profile documentation referenced below: When more than one key is provided, additional keys are used as secondary criteria when the there is equality in all keys selected before them. Abbreviations can be used for any key names, as long as the abbreviation is unambiguous. The following are the keys currently defined: Valid Arg Meaning "calls" call count "cumulative" cumulative time "file" file name "module" file name "pcalls" primitive call count "line" line number "name" function name "nfl" name/file/line "stdname" standard name "time" internal time Note that all sorts on statistics are in descending order (placing most time consuming items first), where as name, file, and line number searches are in ascending order (i.e., alphabetical). The subtle distinction between "nfl" and "stdname" is that the standard name is a sort of the name as printed, which means that the embedded line numbers get compared in an odd way. For example, lines 3, 20, and 40 would (if the file names were the same) appear in the string order "20" "3" and "40". In contrast, "nfl" does a numeric compare of the line numbers. In fact, sort_stats("nfl") is the same as sort_stats("name", "file", "line"). -T : save profile results as shown on screen to a text file. The profile is still shown on screen. -D : save (via dump_stats) profile statistics to given filename. This data is in a format understood by the pstats module, and is generated by a call to the dump_stats() method of profile objects. The profile is still shown on screen. -q: suppress output to the pager. Best used with -T and/or -D above. If you want to run complete programs under the profiler's control, use '%run -p [prof_opts] filename.py [args to program]' where prof_opts contains profiler specific options as described here. You can read the complete documentation for the profile module with:: In [1]: import profile; profile.help() """ opts_def = Struct(D=[''],l=[],s=['time'],T=['']) if user_mode: # regular user call opts,arg_str = self.parse_options(parameter_s,'D:l:rs:T:q', list_all=1, posix=False) namespace = self.shell.user_ns else: # called to run a program by %run -p try: filename = get_py_filename(arg_lst[0]) except IOError as e: try: msg = str(e) except UnicodeError: msg = e.message error(msg) return arg_str = 'execfile(filename,prog_ns)' namespace = { 'execfile': self.shell.safe_execfile, 'prog_ns': prog_ns, 'filename': filename } opts.merge(opts_def) prof = profile.Profile() try: prof = prof.runctx(arg_str,namespace,namespace) sys_exit = '' except SystemExit: sys_exit = """*** SystemExit exception caught in code being profiled.""" stats = pstats.Stats(prof).strip_dirs().sort_stats(*opts.s) lims = opts.l if lims: lims = [] # rebuild lims with ints/floats/strings for lim in opts.l: try: lims.append(int(lim)) except ValueError: try: lims.append(float(lim)) except ValueError: lims.append(lim) # Trap output. stdout_trap = StringIO() if hasattr(stats,'stream'): # In newer versions of python, the stats object has a 'stream' # attribute to write into. stats.stream = stdout_trap stats.print_stats(*lims) else: # For older versions, we manually redirect stdout during printing sys_stdout = sys.stdout try: sys.stdout = stdout_trap stats.print_stats(*lims) finally: sys.stdout = sys_stdout output = stdout_trap.getvalue() output = output.rstrip() if 'q' not in opts: page.page(output) print sys_exit, dump_file = opts.D[0] text_file = opts.T[0] if dump_file: dump_file = unquote_filename(dump_file) prof.dump_stats(dump_file) print '\n*** Profile stats marshalled to file',\ `dump_file`+'.',sys_exit if text_file: text_file = unquote_filename(text_file) pfile = open(text_file,'w') pfile.write(output) pfile.close() print '\n*** Profile printout saved to text file',\ `text_file`+'.',sys_exit if opts.has_key('r'): return stats else: return None @skip_doctest def magic_run(self, parameter_s ='', runner=None, file_finder=get_py_filename): """Run the named file inside IPython as a program. Usage:\\ %run [-n -i -t [-N] -d [-b] -p [profile options]] file [args] Parameters after the filename are passed as command-line arguments to the program (put in sys.argv). Then, control returns to IPython's prompt. This is similar to running at a system prompt:\\ $ python file args\\ but with the advantage of giving you IPython's tracebacks, and of loading all variables into your interactive namespace for further use (unless -p is used, see below). The file is executed in a namespace initially consisting only of __name__=='__main__' and sys.argv constructed as indicated. It thus sees its environment as if it were being run as a stand-alone program (except for sharing global objects such as previously imported modules). But after execution, the IPython interactive namespace gets updated with all variables defined in the program (except for __name__ and sys.argv). This allows for very convenient loading of code for interactive work, while giving each program a 'clean sheet' to run in. Options: -n: __name__ is NOT set to '__main__', but to the running file's name without extension (as python does under import). This allows running scripts and reloading the definitions in them without calling code protected by an ' if __name__ == "__main__" ' clause. -i: run the file in IPython's namespace instead of an empty one. This is useful if you are experimenting with code written in a text editor which depends on variables defined interactively. -e: ignore sys.exit() calls or SystemExit exceptions in the script being run. This is particularly useful if IPython is being used to run unittests, which always exit with a sys.exit() call. In such cases you are interested in the output of the test results, not in seeing a traceback of the unittest module. -t: print timing information at the end of the run. IPython will give you an estimated CPU time consumption for your script, which under Unix uses the resource module to avoid the wraparound problems of time.clock(). Under Unix, an estimate of time spent on system tasks is also given (for Windows platforms this is reported as 0.0). If -t is given, an additional -N option can be given, where must be an integer indicating how many times you want the script to run. The final timing report will include total and per run results. For example (testing the script uniq_stable.py):: In [1]: run -t uniq_stable IPython CPU timings (estimated):\\ User : 0.19597 s.\\ System: 0.0 s.\\ In [2]: run -t -N5 uniq_stable IPython CPU timings (estimated):\\ Total runs performed: 5\\ Times : Total Per run\\ User : 0.910862 s, 0.1821724 s.\\ System: 0.0 s, 0.0 s. -d: run your program under the control of pdb, the Python debugger. This allows you to execute your program step by step, watch variables, etc. Internally, what IPython does is similar to calling: pdb.run('execfile("YOURFILENAME")') with a breakpoint set on line 1 of your file. You can change the line number for this automatic breakpoint to be by using the -bN option (where N must be an integer). For example:: %run -d -b40 myscript will set the first breakpoint at line 40 in myscript.py. Note that the first breakpoint must be set on a line which actually does something (not a comment or docstring) for it to stop execution. When the pdb debugger starts, you will see a (Pdb) prompt. You must first enter 'c' (without quotes) to start execution up to the first breakpoint. Entering 'help' gives information about the use of the debugger. You can easily see pdb's full documentation with "import pdb;pdb.help()" at a prompt. -p: run program under the control of the Python profiler module (which prints a detailed report of execution times, function calls, etc). You can pass other options after -p which affect the behavior of the profiler itself. See the docs for %prun for details. In this mode, the program's variables do NOT propagate back to the IPython interactive namespace (because they remain in the namespace where the profiler executes them). Internally this triggers a call to %prun, see its documentation for details on the options available specifically for profiling. There is one special usage for which the text above doesn't apply: if the filename ends with .ipy, the file is run as ipython script, just as if the commands were written on IPython prompt. -m: specify module name to load instead of script path. Similar to the -m option for the python interpreter. Use this option last if you want to combine with other %run options. Unlike the python interpreter only source modules are allowed no .pyc or .pyo files. For example:: %run -m example will run the example module. """ # get arguments and set sys.argv for program to be run. opts, arg_lst = self.parse_options(parameter_s, 'nidtN:b:pD:l:rs:T:em:', mode='list', list_all=1) if "m" in opts: modulename = opts["m"][0] modpath = find_mod(modulename) if modpath is None: warn('%r is not a valid modulename on sys.path'%modulename) return arg_lst = [modpath] + arg_lst try: filename = file_finder(arg_lst[0]) except IndexError: warn('you must provide at least a filename.') print '\n%run:\n', oinspect.getdoc(self.magic_run) return except IOError as e: try: msg = str(e) except UnicodeError: msg = e.message error(msg) return if filename.lower().endswith('.ipy'): self.shell.safe_execfile_ipy(filename) return # Control the response to exit() calls made by the script being run exit_ignore = 'e' in opts # Make sure that the running script gets a proper sys.argv as if it # were run from a system shell. save_argv = sys.argv # save it for later restoring # simulate shell expansion on arguments, at least tilde expansion args = [ os.path.expanduser(a) for a in arg_lst[1:] ] sys.argv = [filename] + args # put in the proper filename # protect sys.argv from potential unicode strings on Python 2: if not py3compat.PY3: sys.argv = [ py3compat.cast_bytes(a) for a in sys.argv ] if 'i' in opts: # Run in user's interactive namespace prog_ns = self.shell.user_ns __name__save = self.shell.user_ns['__name__'] prog_ns['__name__'] = '__main__' main_mod = self.shell.new_main_mod(prog_ns) else: # Run in a fresh, empty namespace if 'n' in opts: name = os.path.splitext(os.path.basename(filename))[0] else: name = '__main__' main_mod = self.shell.new_main_mod() prog_ns = main_mod.__dict__ prog_ns['__name__'] = name # Since '%run foo' emulates 'python foo.py' at the cmd line, we must # set the __file__ global in the script's namespace prog_ns['__file__'] = filename # pickle fix. See interactiveshell for an explanation. But we need to make sure # that, if we overwrite __main__, we replace it at the end main_mod_name = prog_ns['__name__'] if main_mod_name == '__main__': restore_main = sys.modules['__main__'] else: restore_main = False # This needs to be undone at the end to prevent holding references to # every single object ever created. sys.modules[main_mod_name] = main_mod try: stats = None with self.shell.readline_no_record: if 'p' in opts: stats = self.magic_prun('', 0, opts, arg_lst, prog_ns) else: if 'd' in opts: deb = debugger.Pdb(self.shell.colors) # reset Breakpoint state, which is moronically kept # in a class bdb.Breakpoint.next = 1 bdb.Breakpoint.bplist = {} bdb.Breakpoint.bpbynumber = [None] # Set an initial breakpoint to stop execution maxtries = 10 bp = int(opts.get('b', [1])[0]) checkline = deb.checkline(filename, bp) if not checkline: for bp in range(bp + 1, bp + maxtries + 1): if deb.checkline(filename, bp): break else: msg = ("\nI failed to find a valid line to set " "a breakpoint\n" "after trying up to line: %s.\n" "Please set a valid breakpoint manually " "with the -b option." % bp) error(msg) return # if we find a good linenumber, set the breakpoint deb.do_break('%s:%s' % (filename, bp)) # Start file run print "NOTE: Enter 'c' at the", print "%s prompt to start your script." % deb.prompt ns = {'execfile': py3compat.execfile, 'prog_ns': prog_ns} try: deb.run('execfile("%s", prog_ns)' % filename, ns) except: etype, value, tb = sys.exc_info() # Skip three frames in the traceback: the %run one, # one inside bdb.py, and the command-line typed by the # user (run by exec in pdb itself). self.shell.InteractiveTB(etype, value, tb, tb_offset=3) else: if runner is None: runner = self.default_runner if runner is None: runner = self.shell.safe_execfile if 't' in opts: # timed execution try: nruns = int(opts['N'][0]) if nruns < 1: error('Number of runs must be >=1') return except (KeyError): nruns = 1 twall0 = time.time() if nruns == 1: t0 = clock2() runner(filename, prog_ns, prog_ns, exit_ignore=exit_ignore) t1 = clock2() t_usr = t1[0] - t0[0] t_sys = t1[1] - t0[1] print "\nIPython CPU timings (estimated):" print " User : %10.2f s." % t_usr print " System : %10.2f s." % t_sys else: runs = range(nruns) t0 = clock2() for nr in runs: runner(filename, prog_ns, prog_ns, exit_ignore=exit_ignore) t1 = clock2() t_usr = t1[0] - t0[0] t_sys = t1[1] - t0[1] print "\nIPython CPU timings (estimated):" print "Total runs performed:", nruns print " Times : %10.2f %10.2f" % ('Total', 'Per run') print " User : %10.2f s, %10.2f s." % (t_usr, t_usr / nruns) print " System : %10.2f s, %10.2f s." % (t_sys, t_sys / nruns) twall1 = time.time() print "Wall time: %10.2f s." % (twall1 - twall0) else: # regular execution runner(filename, prog_ns, prog_ns, exit_ignore=exit_ignore) if 'i' in opts: self.shell.user_ns['__name__'] = __name__save else: # The shell MUST hold a reference to prog_ns so after %run # exits, the python deletion mechanism doesn't zero it out # (leaving dangling references). self.shell.cache_main_mod(prog_ns, filename) # update IPython interactive namespace # Some forms of read errors on the file may mean the # __name__ key was never set; using pop we don't have to # worry about a possible KeyError. prog_ns.pop('__name__', None) self.shell.user_ns.update(prog_ns) finally: # It's a bit of a mystery why, but __builtins__ can change from # being a module to becoming a dict missing some key data after # %run. As best I can see, this is NOT something IPython is doing # at all, and similar problems have been reported before: # http://coding.derkeiler.com/Archive/Python/comp.lang.python/2004-10/0188.html # Since this seems to be done by the interpreter itself, the best # we can do is to at least restore __builtins__ for the user on # exit. self.shell.user_ns['__builtins__'] = builtin_mod # Ensure key global structures are restored sys.argv = save_argv if restore_main: sys.modules['__main__'] = restore_main else: # Remove from sys.modules the reference to main_mod we'd # added. Otherwise it will trap references to objects # contained therein. del sys.modules[main_mod_name] return stats @skip_doctest def magic_timeit(self, parameter_s =''): """Time execution of a Python statement or expression Usage:\\ %timeit [-n -r [-t|-c]] statement Time execution of a Python statement or expression using the timeit module. Options: -n: execute the given statement times in a loop. If this value is not given, a fitting value is chosen. -r: repeat the loop iteration times and take the best result. Default: 3 -t: use time.time to measure the time, which is the default on Unix. This function measures wall time. -c: use time.clock to measure the time, which is the default on Windows and measures wall time. On Unix, resource.getrusage is used instead and returns the CPU user time. -p

: use a precision of

digits to display the timing result. Default: 3 Examples -------- :: In [1]: %timeit pass 10000000 loops, best of 3: 53.3 ns per loop In [2]: u = None In [3]: %timeit u is None 10000000 loops, best of 3: 184 ns per loop In [4]: %timeit -r 4 u == None 1000000 loops, best of 4: 242 ns per loop In [5]: import time In [6]: %timeit -n1 time.sleep(2) 1 loops, best of 3: 2 s per loop The times reported by %timeit will be slightly higher than those reported by the timeit.py script when variables are accessed. This is due to the fact that %timeit executes the statement in the namespace of the shell, compared with timeit.py, which uses a single setup statement to import function or create variables. Generally, the bias does not matter as long as results from timeit.py are not mixed with those from %timeit.""" import timeit import math # XXX: Unfortunately the unicode 'micro' symbol can cause problems in # certain terminals. Until we figure out a robust way of # auto-detecting if the terminal can deal with it, use plain 'us' for # microseconds. I am really NOT happy about disabling the proper # 'micro' prefix, but crashing is worse... If anyone knows what the # right solution for this is, I'm all ears... # # Note: using # # s = u'\xb5' # s.encode(sys.getdefaultencoding()) # # is not sufficient, as I've seen terminals where that fails but # print s # # succeeds # # See bug: https://bugs.launchpad.net/ipython/+bug/348466 #units = [u"s", u"ms",u'\xb5',"ns"] units = [u"s", u"ms",u'us',"ns"] scaling = [1, 1e3, 1e6, 1e9] opts, stmt = self.parse_options(parameter_s,'n:r:tcp:', posix=False, strict=False) if stmt == "": return timefunc = timeit.default_timer number = int(getattr(opts, "n", 0)) repeat = int(getattr(opts, "r", timeit.default_repeat)) precision = int(getattr(opts, "p", 3)) if hasattr(opts, "t"): timefunc = time.time if hasattr(opts, "c"): timefunc = clock timer = timeit.Timer(timer=timefunc) # this code has tight coupling to the inner workings of timeit.Timer, # but is there a better way to achieve that the code stmt has access # to the shell namespace? src = timeit.template % {'stmt': timeit.reindent(stmt, 8), 'setup': "pass"} # Track compilation time so it can be reported if too long # Minimum time above which compilation time will be reported tc_min = 0.1 t0 = clock() code = compile(src, "", "exec") tc = clock()-t0 ns = {} exec code in self.shell.user_ns, ns timer.inner = ns["inner"] if number == 0: # determine number so that 0.2 <= total time < 2.0 number = 1 for i in range(1, 10): if timer.timeit(number) >= 0.2: break number *= 10 best = min(timer.repeat(repeat, number)) / number if best > 0.0 and best < 1000.0: order = min(-int(math.floor(math.log10(best)) // 3), 3) elif best >= 1000.0: order = 0 else: order = 3 print u"%d loops, best of %d: %.*g %s per loop" % (number, repeat, precision, best * scaling[order], units[order]) if tc > tc_min: print "Compiler time: %.2f s" % tc @skip_doctest @needs_local_scope def magic_time(self,parameter_s, user_locals): """Time execution of a Python statement or expression. The CPU and wall clock times are printed, and the value of the expression (if any) is returned. Note that under Win32, system time is always reported as 0, since it can not be measured. This function provides very basic timing functionality. In Python 2.3, the timeit module offers more control and sophistication, so this could be rewritten to use it (patches welcome). Examples -------- :: In [1]: time 2**128 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s Wall time: 0.00 Out[1]: 340282366920938463463374607431768211456L In [2]: n = 1000000 In [3]: time sum(range(n)) CPU times: user 1.20 s, sys: 0.05 s, total: 1.25 s Wall time: 1.37 Out[3]: 499999500000L In [4]: time print 'hello world' hello world CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s Wall time: 0.00 Note that the time needed by Python to compile the given expression will be reported if it is more than 0.1s. In this example, the actual exponentiation is done by Python at compilation time, so while the expression can take a noticeable amount of time to compute, that time is purely due to the compilation: In [5]: time 3**9999; CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s Wall time: 0.00 s In [6]: time 3**999999; CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s Wall time: 0.00 s Compiler : 0.78 s """ # fail immediately if the given expression can't be compiled expr = self.shell.prefilter(parameter_s,False) # Minimum time above which compilation time will be reported tc_min = 0.1 try: mode = 'eval' t0 = clock() code = compile(expr,'',mode) tc = clock()-t0 except SyntaxError: mode = 'exec' t0 = clock() code = compile(expr,'',mode) tc = clock()-t0 # skew measurement as little as possible glob = self.shell.user_ns wtime = time.time # time execution wall_st = wtime() if mode=='eval': st = clock2() out = eval(code, glob, user_locals) end = clock2() else: st = clock2() exec code in glob, user_locals end = clock2() out = None wall_end = wtime() # Compute actual times and report wall_time = wall_end-wall_st cpu_user = end[0]-st[0] cpu_sys = end[1]-st[1] cpu_tot = cpu_user+cpu_sys print "CPU times: user %.2f s, sys: %.2f s, total: %.2f s" % \ (cpu_user,cpu_sys,cpu_tot) print "Wall time: %.2f s" % wall_time if tc > tc_min: print "Compiler : %.2f s" % tc return out @skip_doctest def magic_macro(self,parameter_s = ''): """Define a macro for future re-execution. It accepts ranges of history, filenames or string objects. Usage:\\ %macro [options] name n1-n2 n3-n4 ... n5 .. n6 ... Options: -r: use 'raw' input. By default, the 'processed' history is used, so that magics are loaded in their transformed version to valid Python. If this option is given, the raw input as typed as the command line is used instead. This will define a global variable called `name` which is a string made of joining the slices and lines you specify (n1,n2,... numbers above) from your input history into a single string. This variable acts like an automatic function which re-executes those lines as if you had typed them. You just type 'name' at the prompt and the code executes. The syntax for indicating input ranges is described in %history. Note: as a 'hidden' feature, you can also use traditional python slice notation, where N:M means numbers N through M-1. For example, if your history contains (%hist prints it):: 44: x=1 45: y=3 46: z=x+y 47: print x 48: a=5 49: print 'x',x,'y',y you can create a macro with lines 44 through 47 (included) and line 49 called my_macro with:: In [55]: %macro my_macro 44-47 49 Now, typing `my_macro` (without quotes) will re-execute all this code in one pass. You don't need to give the line-numbers in order, and any given line number can appear multiple times. You can assemble macros with any lines from your input history in any order. The macro is a simple object which holds its value in an attribute, but IPython's display system checks for macros and executes them as code instead of printing them when you type their name. You can view a macro's contents by explicitly printing it with:: print macro_name """ opts,args = self.parse_options(parameter_s,'r',mode='list') if not args: # List existing macros return sorted(k for k,v in self.shell.user_ns.iteritems() if\ isinstance(v, Macro)) if len(args) == 1: raise UsageError( "%macro insufficient args; usage '%macro name n1-n2 n3-4...") name, codefrom = args[0], " ".join(args[1:]) #print 'rng',ranges # dbg try: lines = self.shell.find_user_code(codefrom, 'r' in opts) except (ValueError, TypeError) as e: print e.args[0] return macro = Macro(lines) self.shell.define_macro(name, macro) print 'Macro `%s` created. To execute, type its name (without quotes).' % name print '=== Macro contents: ===' print macro, def magic_save(self,parameter_s = ''): """Save a set of lines or a macro to a given filename. Usage:\\ %save [options] filename n1-n2 n3-n4 ... n5 .. n6 ... Options: -r: use 'raw' input. By default, the 'processed' history is used, so that magics are loaded in their transformed version to valid Python. If this option is given, the raw input as typed as the command line is used instead. This function uses the same syntax as %history for input ranges, then saves the lines to the filename you specify. It adds a '.py' extension to the file if you don't do so yourself, and it asks for confirmation before overwriting existing files.""" opts,args = self.parse_options(parameter_s,'r',mode='list') fname, codefrom = unquote_filename(args[0]), " ".join(args[1:]) if not fname.endswith('.py'): fname += '.py' if os.path.isfile(fname): overwrite = self.shell.ask_yes_no('File `%s` exists. Overwrite (y/[N])? ' % fname, default='n') if not overwrite : print 'Operation cancelled.' return try: cmds = self.shell.find_user_code(codefrom, 'r' in opts) except (TypeError, ValueError) as e: print e.args[0] return with io.open(fname,'w', encoding="utf-8") as f: f.write(u"# coding: utf-8\n") f.write(py3compat.cast_unicode(cmds)) print 'The following commands were written to file `%s`:' % fname print cmds def magic_pastebin(self, parameter_s = ''): """Upload code to Github's Gist paste bin, returning the URL. Usage:\\ %pastebin [-d "Custom description"] 1-7 The argument can be an input history range, a filename, or the name of a string or macro. Options: -d: Pass a custom description for the gist. The default will say "Pasted from IPython". """ opts, args = self.parse_options(parameter_s, 'd:') try: code = self.shell.find_user_code(args) except (ValueError, TypeError) as e: print e.args[0] return post_data = json.dumps({ "description": opts.get('d', "Pasted from IPython"), "public": True, "files": { "file1.py": { "content": code } } }).encode('utf-8') response = urlopen("https://api.github.com/gists", post_data) response_data = json.loads(response.read().decode('utf-8')) return response_data['html_url'] def magic_loadpy(self, arg_s): """Alias of `%load` `%loadpy` has gained some flexibility and droped the requirement of a `.py` extension. So it has been renamed simply into %load. You can look at `%load`'s docstring for more info. """ self.magic_load(arg_s) def magic_load(self, arg_s): """Load code into the current frontend. Usage:\\ %load [options] source where source can be a filename, URL, input history range or macro Options: -------- -y : Don't ask confirmation for loading source above 200 000 characters. This magic command can either take a local filename, a URL, an history range (see %history) or a macro as argument, it will prompt for confirmation before loading source with more than 200 000 characters, unless -y flag is passed or if the frontend does not support raw_input:: %load myscript.py %load 7-27 %load myMacro %load http://www.example.com/myscript.py """ opts,args = self.parse_options(arg_s,'y') contents = self.shell.find_user_code(args) l = len(contents) # 200 000 is ~ 2500 full 80 caracter lines # so in average, more than 5000 lines if l > 200000 and 'y' not in opts: try: ans = self.shell.ask_yes_no(("The text you're trying to load seems pretty big"\ " (%d characters). Continue (y/[N]) ?" % l), default='n' ) except StdinNotImplementedError: #asume yes if raw input not implemented ans = True if ans is False : print 'Operation cancelled.' return self.set_next_input(contents) def _find_edit_target(self, args, opts, last_call): """Utility method used by magic_edit to find what to edit.""" def make_filename(arg): "Make a filename from the given args" arg = unquote_filename(arg) try: filename = get_py_filename(arg) except IOError: # If it ends with .py but doesn't already exist, assume we want # a new file. if arg.endswith('.py'): filename = arg else: filename = None return filename # Set a few locals from the options for convenience: opts_prev = 'p' in opts opts_raw = 'r' in opts # custom exceptions class DataIsObject(Exception): pass # Default line number value lineno = opts.get('n',None) if opts_prev: args = '_%s' % last_call[0] if not self.shell.user_ns.has_key(args): args = last_call[1] # use last_call to remember the state of the previous call, but don't # let it be clobbered by successive '-p' calls. try: last_call[0] = self.shell.displayhook.prompt_count if not opts_prev: last_call[1] = args except: pass # by default this is done with temp files, except when the given # arg is a filename use_temp = True data = '' # First, see if the arguments should be a filename. filename = make_filename(args) if filename: use_temp = False elif args: # Mode where user specifies ranges of lines, like in %macro. data = self.shell.extract_input_lines(args, opts_raw) if not data: try: # Load the parameter given as a variable. If not a string, # process it as an object instead (below) #print '*** args',args,'type',type(args) # dbg data = eval(args, self.shell.user_ns) if not isinstance(data, basestring): raise DataIsObject except (NameError,SyntaxError): # given argument is not a variable, try as a filename filename = make_filename(args) if filename is None: warn("Argument given (%s) can't be found as a variable " "or as a filename." % args) return use_temp = False except DataIsObject: # macros have a special edit function if isinstance(data, Macro): raise MacroToEdit(data) # For objects, try to edit the file where they are defined try: filename = inspect.getabsfile(data) if 'fakemodule' in filename.lower() and inspect.isclass(data): # class created by %edit? Try to find source # by looking for method definitions instead, the # __module__ in those classes is FakeModule. attrs = [getattr(data, aname) for aname in dir(data)] for attr in attrs: if not inspect.ismethod(attr): continue filename = inspect.getabsfile(attr) if filename and 'fakemodule' not in filename.lower(): # change the attribute to be the edit target instead data = attr break datafile = 1 except TypeError: filename = make_filename(args) datafile = 1 warn('Could not find file where `%s` is defined.\n' 'Opening a file named `%s`' % (args,filename)) # Now, make sure we can actually read the source (if it was in # a temp file it's gone by now). if datafile: try: if lineno is None: lineno = inspect.getsourcelines(data)[1] except IOError: filename = make_filename(args) if filename is None: warn('The file `%s` where `%s` was defined cannot ' 'be read.' % (filename,data)) return use_temp = False if use_temp: filename = self.shell.mktempfile(data) print 'IPython will make a temporary file named:',filename return filename, lineno, use_temp def _edit_macro(self,mname,macro): """open an editor with the macro data in a file""" filename = self.shell.mktempfile(macro.value) self.shell.hooks.editor(filename) # and make a new macro object, to replace the old one mfile = open(filename) mvalue = mfile.read() mfile.close() self.shell.user_ns[mname] = Macro(mvalue) def magic_ed(self,parameter_s=''): """Alias to %edit.""" return self.magic_edit(parameter_s) @skip_doctest def magic_edit(self,parameter_s='',last_call=['','']): """Bring up an editor and execute the resulting code. Usage: %edit [options] [args] %edit runs IPython's editor hook. The default version of this hook is set to call the editor specified by your $EDITOR environment variable. If this isn't found, it will default to vi under Linux/Unix and to notepad under Windows. See the end of this docstring for how to change the editor hook. You can also set the value of this editor via the ``TerminalInteractiveShell.editor`` option in your configuration file. This is useful if you wish to use a different editor from your typical default with IPython (and for Windows users who typically don't set environment variables). This command allows you to conveniently edit multi-line code right in your IPython session. If called without arguments, %edit opens up an empty editor with a temporary file and will execute the contents of this file when you close it (don't forget to save it!). Options: -n : open the editor at a specified line number. By default, the IPython editor hook uses the unix syntax 'editor +N filename', but you can configure this by providing your own modified hook if your favorite editor supports line-number specifications with a different syntax. -p: this will call the editor with the same data as the previous time it was used, regardless of how long ago (in your current session) it was. -r: use 'raw' input. This option only applies to input taken from the user's history. By default, the 'processed' history is used, so that magics are loaded in their transformed version to valid Python. If this option is given, the raw input as typed as the command line is used instead. When you exit the editor, it will be executed by IPython's own processor. -x: do not execute the edited code immediately upon exit. This is mainly useful if you are editing programs which need to be called with command line arguments, which you can then do using %run. Arguments: If arguments are given, the following possibilities exist: - If the argument is a filename, IPython will load that into the editor. It will execute its contents with execfile() when you exit, loading any code in the file into your interactive namespace. - The arguments are ranges of input history, e.g. "7 ~1/4-6". The syntax is the same as in the %history magic. - If the argument is a string variable, its contents are loaded into the editor. You can thus edit any string which contains python code (including the result of previous edits). - If the argument is the name of an object (other than a string), IPython will try to locate the file where it was defined and open the editor at the point where it is defined. You can use `%edit function` to load an editor exactly at the point where 'function' is defined, edit it and have the file be executed automatically. - If the object is a macro (see %macro for details), this opens up your specified editor with a temporary file containing the macro's data. Upon exit, the macro is reloaded with the contents of the file. Note: opening at an exact line is only supported under Unix, and some editors (like kedit and gedit up to Gnome 2.8) do not understand the '+NUMBER' parameter necessary for this feature. Good editors like (X)Emacs, vi, jed, pico and joe all do. After executing your code, %edit will return as output the code you typed in the editor (except when it was an existing file). This way you can reload the code in further invocations of %edit as a variable, via _ or Out[], where is the prompt number of the output. Note that %edit is also available through the alias %ed. This is an example of creating a simple function inside the editor and then modifying it. First, start up the editor:: In [1]: ed Editing... done. Executing edited code... Out[1]: 'def foo():\\n print "foo() was defined in an editing session"\\n' We can then call the function foo():: In [2]: foo() foo() was defined in an editing session Now we edit foo. IPython automatically loads the editor with the (temporary) file where foo() was previously defined:: In [3]: ed foo Editing... done. Executing edited code... And if we call foo() again we get the modified version:: In [4]: foo() foo() has now been changed! Here is an example of how to edit a code snippet successive times. First we call the editor:: In [5]: ed Editing... done. Executing edited code... hello Out[5]: "print 'hello'\\n" Now we call it again with the previous output (stored in _):: In [6]: ed _ Editing... done. Executing edited code... hello world Out[6]: "print 'hello world'\\n" Now we call it with the output #8 (stored in _8, also as Out[8]):: In [7]: ed _8 Editing... done. Executing edited code... hello again Out[7]: "print 'hello again'\\n" Changing the default editor hook: If you wish to write your own editor hook, you can put it in a configuration file which you load at startup time. The default hook is defined in the IPython.core.hooks module, and you can use that as a starting example for further modifications. That file also has general instructions on how to set a new hook for use once you've defined it.""" opts,args = self.parse_options(parameter_s,'prxn:') try: filename, lineno, is_temp = self._find_edit_target(args, opts, last_call) except MacroToEdit as e: self._edit_macro(args, e.args[0]) return # do actual editing here print 'Editing...', sys.stdout.flush() try: # Quote filenames that may have spaces in them if ' ' in filename: filename = "'%s'" % filename self.shell.hooks.editor(filename,lineno) except TryNext: warn('Could not open editor') return # XXX TODO: should this be generalized for all string vars? # For now, this is special-cased to blocks created by cpaste if args.strip() == 'pasted_block': self.shell.user_ns['pasted_block'] = file_read(filename) if 'x' in opts: # -x prevents actual execution print else: print 'done. Executing edited code...' if 'r' in opts: # Untranslated IPython code self.shell.run_cell(file_read(filename), store_history=False) else: self.shell.safe_execfile(filename, self.shell.user_ns, self.shell.user_ns) if is_temp: try: return open(filename).read() except IOError,msg: if msg.filename == filename: warn('File not found. Did you forget to save?') return else: self.shell.showtraceback() def magic_xmode(self,parameter_s = ''): """Switch modes for the exception handlers. Valid modes: Plain, Context and Verbose. If called without arguments, acts as a toggle.""" def xmode_switch_err(name): warn('Error changing %s exception modes.\n%s' % (name,sys.exc_info()[1])) shell = self.shell new_mode = parameter_s.strip().capitalize() try: shell.InteractiveTB.set_mode(mode=new_mode) print 'Exception reporting mode:',shell.InteractiveTB.mode except: xmode_switch_err('user') def magic_colors(self,parameter_s = ''): """Switch color scheme for prompts, info system and exception handlers. Currently implemented schemes: NoColor, Linux, LightBG. Color scheme names are not case-sensitive. Examples -------- To get a plain black and white terminal:: %colors nocolor """ def color_switch_err(name): warn('Error changing %s color schemes.\n%s' % (name,sys.exc_info()[1])) new_scheme = parameter_s.strip() if not new_scheme: raise UsageError( "%colors: you must specify a color scheme. See '%colors?'") return # local shortcut shell = self.shell import IPython.utils.rlineimpl as readline if not shell.colors_force and \ not readline.have_readline and sys.platform == "win32": msg = """\ Proper color support under MS Windows requires the pyreadline library. You can find it at: http://ipython.org/pyreadline.html Gary's readline needs the ctypes module, from: http://starship.python.net/crew/theller/ctypes (Note that ctypes is already part of Python versions 2.5 and newer). Defaulting color scheme to 'NoColor'""" new_scheme = 'NoColor' warn(msg) # readline option is 0 if not shell.colors_force and not shell.has_readline: new_scheme = 'NoColor' # Set prompt colors try: shell.prompt_manager.color_scheme = new_scheme except: color_switch_err('prompt') else: shell.colors = \ shell.prompt_manager.color_scheme_table.active_scheme_name # Set exception colors try: shell.InteractiveTB.set_colors(scheme = new_scheme) shell.SyntaxTB.set_colors(scheme = new_scheme) except: color_switch_err('exception') # Set info (for 'object?') colors if shell.color_info: try: shell.inspector.set_active_scheme(new_scheme) except: color_switch_err('object inspector') else: shell.inspector.set_active_scheme('NoColor') def magic_pprint(self, parameter_s=''): """Toggle pretty printing on/off.""" ptformatter = self.shell.display_formatter.formatters['text/plain'] ptformatter.pprint = bool(1 - ptformatter.pprint) print 'Pretty printing has been turned', \ ['OFF','ON'][ptformatter.pprint] #...................................................................... # Functions to implement unix shell-type things @skip_doctest def magic_alias(self, parameter_s = ''): """Define an alias for a system command. '%alias alias_name cmd' defines 'alias_name' as an alias for 'cmd' Then, typing 'alias_name params' will execute the system command 'cmd params' (from your underlying operating system). Aliases have lower precedence than magic functions and Python normal variables, so if 'foo' is both a Python variable and an alias, the alias can not be executed until 'del foo' removes the Python variable. You can use the %l specifier in an alias definition to represent the whole line when the alias is called. For example:: In [2]: alias bracket echo "Input in brackets: <%l>" In [3]: bracket hello world Input in brackets: You can also define aliases with parameters using %s specifiers (one per parameter):: In [1]: alias parts echo first %s second %s In [2]: %parts A B first A second B In [3]: %parts A Incorrect number of arguments: 2 expected. parts is an alias to: 'echo first %s second %s' Note that %l and %s are mutually exclusive. You can only use one or the other in your aliases. Aliases expand Python variables just like system calls using ! or !! do: all expressions prefixed with '$' get expanded. For details of the semantic rules, see PEP-215: http://www.python.org/peps/pep-0215.html. This is the library used by IPython for variable expansion. If you want to access a true shell variable, an extra $ is necessary to prevent its expansion by IPython:: In [6]: alias show echo In [7]: PATH='A Python string' In [8]: show $PATH A Python string In [9]: show $$PATH /usr/local/lf9560/bin:/usr/local/intel/compiler70/ia32/bin:... You can use the alias facility to acess all of $PATH. See the %rehash and %rehashx functions, which automatically create aliases for the contents of your $PATH. If called with no parameters, %alias prints the current alias table.""" par = parameter_s.strip() if not par: stored = self.shell.db.get('stored_aliases', {} ) aliases = sorted(self.shell.alias_manager.aliases) # for k, v in stored: # atab.append(k, v[0]) print "Total number of aliases:", len(aliases) sys.stdout.flush() return aliases # Now try to define a new one try: alias,cmd = par.split(None, 1) except: print oinspect.getdoc(self.magic_alias) else: self.shell.alias_manager.soft_define_alias(alias, cmd) # end magic_alias def magic_unalias(self, parameter_s = ''): """Remove an alias""" aname = parameter_s.strip() self.shell.alias_manager.undefine_alias(aname) stored = self.shell.db.get('stored_aliases', {} ) if aname in stored: print "Removing %stored alias",aname del stored[aname] self.shell.db['stored_aliases'] = stored def magic_rehashx(self, parameter_s = ''): """Update the alias table with all executable files in $PATH. This version explicitly checks that every entry in $PATH is a file with execute access (os.X_OK), so it is much slower than %rehash. Under Windows, it checks executability as a match against a '|'-separated string of extensions, stored in the IPython config variable win_exec_ext. This defaults to 'exe|com|bat'. This function also resets the root module cache of module completer, used on slow filesystems. """ from IPython.core.alias import InvalidAliasError # for the benefit of module completer in ipy_completers.py del self.shell.db['rootmodules'] path = [os.path.abspath(os.path.expanduser(p)) for p in os.environ.get('PATH','').split(os.pathsep)] path = filter(os.path.isdir,path) syscmdlist = [] # Now define isexec in a cross platform manner. if os.name == 'posix': isexec = lambda fname:os.path.isfile(fname) and \ os.access(fname,os.X_OK) else: try: winext = os.environ['pathext'].replace(';','|').replace('.','') except KeyError: winext = 'exe|com|bat|py' if 'py' not in winext: winext += '|py' execre = re.compile(r'(.*)\.(%s)$' % winext,re.IGNORECASE) isexec = lambda fname:os.path.isfile(fname) and execre.match(fname) savedir = os.getcwdu() # Now walk the paths looking for executables to alias. try: # write the whole loop for posix/Windows so we don't have an if in # the innermost part if os.name == 'posix': for pdir in path: os.chdir(pdir) for ff in os.listdir(pdir): if isexec(ff): try: # Removes dots from the name since ipython # will assume names with dots to be python. self.shell.alias_manager.define_alias( ff.replace('.',''), ff) except InvalidAliasError: pass else: syscmdlist.append(ff) else: no_alias = self.shell.alias_manager.no_alias for pdir in path: os.chdir(pdir) for ff in os.listdir(pdir): base, ext = os.path.splitext(ff) if isexec(ff) and base.lower() not in no_alias: if ext.lower() == '.exe': ff = base try: # Removes dots from the name since ipython # will assume names with dots to be python. self.shell.alias_manager.define_alias( base.lower().replace('.',''), ff) except InvalidAliasError: pass syscmdlist.append(ff) self.shell.db['syscmdlist'] = syscmdlist finally: os.chdir(savedir) @skip_doctest def magic_pwd(self, parameter_s = ''): """Return the current working directory path. Examples -------- :: In [9]: pwd Out[9]: '/home/tsuser/sprint/ipython' """ return os.getcwdu() @skip_doctest def magic_cd(self, parameter_s=''): """Change the current working directory. This command automatically maintains an internal list of directories you visit during your IPython session, in the variable _dh. The command %dhist shows this history nicely formatted. You can also do 'cd -' to see directory history conveniently. Usage: cd 'dir': changes to directory 'dir'. cd -: changes to the last visited directory. cd -: changes to the n-th directory in the directory history. cd --foo: change to directory that matches 'foo' in history cd -b : jump to a bookmark set by %bookmark (note: cd is enough if there is no directory , but a bookmark with the name exists.) 'cd -b ' allows you to tab-complete bookmark names. Options: -q: quiet. Do not print the working directory after the cd command is executed. By default IPython's cd command does print this directory, since the default prompts do not display path information. Note that !cd doesn't work for this purpose because the shell where !command runs is immediately discarded after executing 'command'. Examples -------- :: In [10]: cd parent/child /home/tsuser/parent/child """ parameter_s = parameter_s.strip() #bkms = self.shell.persist.get("bookmarks",{}) oldcwd = os.getcwdu() numcd = re.match(r'(-)(\d+)$',parameter_s) # jump in directory history by number if numcd: nn = int(numcd.group(2)) try: ps = self.shell.user_ns['_dh'][nn] except IndexError: print 'The requested directory does not exist in history.' return else: opts = {} elif parameter_s.startswith('--'): ps = None fallback = None pat = parameter_s[2:] dh = self.shell.user_ns['_dh'] # first search only by basename (last component) for ent in reversed(dh): if pat in os.path.basename(ent) and os.path.isdir(ent): ps = ent break if fallback is None and pat in ent and os.path.isdir(ent): fallback = ent # if we have no last part match, pick the first full path match if ps is None: ps = fallback if ps is None: print "No matching entry in directory history" return else: opts = {} else: #turn all non-space-escaping backslashes to slashes, # for c:\windows\directory\names\ parameter_s = re.sub(r'\\(?! )','/', parameter_s) opts,ps = self.parse_options(parameter_s,'qb',mode='string') # jump to previous if ps == '-': try: ps = self.shell.user_ns['_dh'][-2] except IndexError: raise UsageError('%cd -: No previous directory to change to.') # jump to bookmark if needed else: if not os.path.isdir(ps) or opts.has_key('b'): bkms = self.shell.db.get('bookmarks', {}) if bkms.has_key(ps): target = bkms[ps] print '(bookmark:%s) -> %s' % (ps,target) ps = target else: if opts.has_key('b'): raise UsageError("Bookmark '%s' not found. " "Use '%%bookmark -l' to see your bookmarks." % ps) # strip extra quotes on Windows, because os.chdir doesn't like them ps = unquote_filename(ps) # at this point ps should point to the target dir if ps: try: os.chdir(os.path.expanduser(ps)) if hasattr(self.shell, 'term_title') and self.shell.term_title: set_term_title('IPython: ' + abbrev_cwd()) except OSError: print sys.exc_info()[1] else: cwd = os.getcwdu() dhist = self.shell.user_ns['_dh'] if oldcwd != cwd: dhist.append(cwd) self.shell.db['dhist'] = compress_dhist(dhist)[-100:] else: os.chdir(self.shell.home_dir) if hasattr(self.shell, 'term_title') and self.shell.term_title: set_term_title('IPython: ' + '~') cwd = os.getcwdu() dhist = self.shell.user_ns['_dh'] if oldcwd != cwd: dhist.append(cwd) self.shell.db['dhist'] = compress_dhist(dhist)[-100:] if not 'q' in opts and self.shell.user_ns['_dh']: print self.shell.user_ns['_dh'][-1] def magic_env(self, parameter_s=''): """List environment variables.""" return dict(os.environ) def magic_pushd(self, parameter_s=''): """Place the current dir on stack and change directory. Usage:\\ %pushd ['dirname'] """ dir_s = self.shell.dir_stack tgt = os.path.expanduser(unquote_filename(parameter_s)) cwd = os.getcwdu().replace(self.home_dir,'~') if tgt: self.magic_cd(parameter_s) dir_s.insert(0,cwd) return self.magic_dirs() def magic_popd(self, parameter_s=''): """Change to directory popped off the top of the stack. """ if not self.shell.dir_stack: raise UsageError("%popd on empty stack") top = self.shell.dir_stack.pop(0) self.magic_cd(top) print "popd ->",top def magic_dirs(self, parameter_s=''): """Return the current directory stack.""" return self.shell.dir_stack def magic_dhist(self, parameter_s=''): """Print your history of visited directories. %dhist -> print full history\\ %dhist n -> print last n entries only\\ %dhist n1 n2 -> print entries between n1 and n2 (n1 not included)\\ This history is automatically maintained by the %cd command, and always available as the global list variable _dh. You can use %cd - to go to directory number . Note that most of time, you should view directory history by entering cd -. """ dh = self.shell.user_ns['_dh'] if parameter_s: try: args = map(int,parameter_s.split()) except: self.arg_err(Magic.magic_dhist) return if len(args) == 1: ini,fin = max(len(dh)-(args[0]),0),len(dh) elif len(args) == 2: ini,fin = args else: self.arg_err(Magic.magic_dhist) return else: ini,fin = 0,len(dh) nlprint(dh, header = 'Directory history (kept in _dh)', start=ini,stop=fin) @skip_doctest def magic_sc(self, parameter_s=''): """Shell capture - execute a shell command and capture its output. DEPRECATED. Suboptimal, retained for backwards compatibility. You should use the form 'var = !command' instead. Example: "%sc -l myfiles = ls ~" should now be written as "myfiles = !ls ~" myfiles.s, myfiles.l and myfiles.n still apply as documented below. -- %sc [options] varname=command IPython will run the given command using commands.getoutput(), and will then update the user's interactive namespace with a variable called varname, containing the value of the call. Your command can contain shell wildcards, pipes, etc. The '=' sign in the syntax is mandatory, and the variable name you supply must follow Python's standard conventions for valid names. (A special format without variable name exists for internal use) Options: -l: list output. Split the output on newlines into a list before assigning it to the given variable. By default the output is stored as a single string. -v: verbose. Print the contents of the variable. In most cases you should not need to split as a list, because the returned value is a special type of string which can automatically provide its contents either as a list (split on newlines) or as a space-separated string. These are convenient, respectively, either for sequential processing or to be passed to a shell command. For example:: # Capture into variable a In [1]: sc a=ls *py # a is a string with embedded newlines In [2]: a Out[2]: 'setup.py\\nwin32_manual_post_install.py' # which can be seen as a list: In [3]: a.l Out[3]: ['setup.py', 'win32_manual_post_install.py'] # or as a whitespace-separated string: In [4]: a.s Out[4]: 'setup.py win32_manual_post_install.py' # a.s is useful to pass as a single command line: In [5]: !wc -l $a.s 146 setup.py 130 win32_manual_post_install.py 276 total # while the list form is useful to loop over: In [6]: for f in a.l: ...: !wc -l $f ...: 146 setup.py 130 win32_manual_post_install.py Similarly, the lists returned by the -l option are also special, in the sense that you can equally invoke the .s attribute on them to automatically get a whitespace-separated string from their contents:: In [7]: sc -l b=ls *py In [8]: b Out[8]: ['setup.py', 'win32_manual_post_install.py'] In [9]: b.s Out[9]: 'setup.py win32_manual_post_install.py' In summary, both the lists and strings used for output capture have the following special attributes:: .l (or .list) : value as list. .n (or .nlstr): value as newline-separated string. .s (or .spstr): value as space-separated string. """ opts,args = self.parse_options(parameter_s,'lv') # Try to get a variable name and command to run try: # the variable name must be obtained from the parse_options # output, which uses shlex.split to strip options out. var,_ = args.split('=',1) var = var.strip() # But the command has to be extracted from the original input # parameter_s, not on what parse_options returns, to avoid the # quote stripping which shlex.split performs on it. _,cmd = parameter_s.split('=',1) except ValueError: var,cmd = '','' # If all looks ok, proceed split = 'l' in opts out = self.shell.getoutput(cmd, split=split) if opts.has_key('v'): print '%s ==\n%s' % (var,pformat(out)) if var: self.shell.user_ns.update({var:out}) else: return out def magic_sx(self, parameter_s=''): """Shell execute - run a shell command and capture its output. %sx command IPython will run the given command using commands.getoutput(), and return the result formatted as a list (split on '\\n'). Since the output is _returned_, it will be stored in ipython's regular output cache Out[N] and in the '_N' automatic variables. Notes: 1) If an input line begins with '!!', then %sx is automatically invoked. That is, while:: !ls causes ipython to simply issue system('ls'), typing:: !!ls is a shorthand equivalent to:: %sx ls 2) %sx differs from %sc in that %sx automatically splits into a list, like '%sc -l'. The reason for this is to make it as easy as possible to process line-oriented shell output via further python commands. %sc is meant to provide much finer control, but requires more typing. 3) Just like %sc -l, this is a list with special attributes: :: .l (or .list) : value as list. .n (or .nlstr): value as newline-separated string. .s (or .spstr): value as whitespace-separated string. This is very useful when trying to use such lists as arguments to system commands.""" if parameter_s: return self.shell.getoutput(parameter_s) def magic_bookmark(self, parameter_s=''): """Manage IPython's bookmark system. %bookmark - set bookmark to current dir %bookmark

- set bookmark to %bookmark -l - list all bookmarks %bookmark -d - remove bookmark %bookmark -r - remove all bookmarks You can later on access a bookmarked folder with:: %cd -b or simply '%cd ' if there is no directory called AND there is such a bookmark defined. Your bookmarks persist through IPython sessions, but they are associated with each profile.""" opts,args = self.parse_options(parameter_s,'drl',mode='list') if len(args) > 2: raise UsageError("%bookmark: too many arguments") bkms = self.shell.db.get('bookmarks',{}) if opts.has_key('d'): try: todel = args[0] except IndexError: raise UsageError( "%bookmark -d: must provide a bookmark to delete") else: try: del bkms[todel] except KeyError: raise UsageError( "%%bookmark -d: Can't delete bookmark '%s'" % todel) elif opts.has_key('r'): bkms = {} elif opts.has_key('l'): bks = bkms.keys() bks.sort() if bks: size = max(map(len,bks)) else: size = 0 fmt = '%-'+str(size)+'s -> %s' print 'Current bookmarks:' for bk in bks: print fmt % (bk,bkms[bk]) else: if not args: raise UsageError("%bookmark: You must specify the bookmark name") elif len(args)==1: bkms[args[0]] = os.getcwdu() elif len(args)==2: bkms[args[0]] = args[1] self.shell.db['bookmarks'] = bkms def magic_pycat(self, parameter_s=''): """Show a syntax-highlighted file through a pager. This magic is similar to the cat utility, but it will assume the file to be Python source and will show it with syntax highlighting. This magic command can either take a local filename, an url, an history range (see %history) or a macro as argument :: %pycat myscript.py %pycat 7-27 %pycat myMacro %pycat http://www.example.com/myscript.py """ try : cont = self.shell.find_user_code(parameter_s) except ValueError, IOError: print "Error: no such file, variable, URL, history range or macro" return page.page(self.shell.pycolorize(cont)) def magic_quickref(self,arg): """ Show a quick reference sheet """ import IPython.core.usage qr = IPython.core.usage.quick_reference + self.magic_magic('-brief') page.page(qr) def magic_doctest_mode(self,parameter_s=''): """Toggle doctest mode on and off. This mode is intended to make IPython behave as much as possible like a plain Python shell, from the perspective of how its prompts, exceptions and output look. This makes it easy to copy and paste parts of a session into doctests. It does so by: - Changing the prompts to the classic ``>>>`` ones. - Changing the exception reporting mode to 'Plain'. - Disabling pretty-printing of output. Note that IPython also supports the pasting of code snippets that have leading '>>>' and '...' prompts in them. This means that you can paste doctests from files or docstrings (even if they have leading whitespace), and the code will execute correctly. You can then use '%history -t' to see the translated history; this will give you the input after removal of all the leading prompts and whitespace, which can be pasted back into an editor. With these features, you can switch into this mode easily whenever you need to do testing and changes to doctests, without having to leave your existing IPython session. """ from IPython.utils.ipstruct import Struct # Shorthands shell = self.shell pm = shell.prompt_manager meta = shell.meta disp_formatter = self.shell.display_formatter ptformatter = disp_formatter.formatters['text/plain'] # dstore is a data store kept in the instance metadata bag to track any # changes we make, so we can undo them later. dstore = meta.setdefault('doctest_mode',Struct()) save_dstore = dstore.setdefault # save a few values we'll need to recover later mode = save_dstore('mode',False) save_dstore('rc_pprint',ptformatter.pprint) save_dstore('xmode',shell.InteractiveTB.mode) save_dstore('rc_separate_out',shell.separate_out) save_dstore('rc_separate_out2',shell.separate_out2) save_dstore('rc_prompts_pad_left',pm.justify) save_dstore('rc_separate_in',shell.separate_in) save_dstore('rc_plain_text_only',disp_formatter.plain_text_only) save_dstore('prompt_templates',(pm.in_template, pm.in2_template, pm.out_template)) if mode == False: # turn on pm.in_template = '>>> ' pm.in2_template = '... ' pm.out_template = '' # Prompt separators like plain python shell.separate_in = '' shell.separate_out = '' shell.separate_out2 = '' pm.justify = False ptformatter.pprint = False disp_formatter.plain_text_only = True shell.magic_xmode('Plain') else: # turn off pm.in_template, pm.in2_template, pm.out_template = dstore.prompt_templates shell.separate_in = dstore.rc_separate_in shell.separate_out = dstore.rc_separate_out shell.separate_out2 = dstore.rc_separate_out2 pm.justify = dstore.rc_prompts_pad_left ptformatter.pprint = dstore.rc_pprint disp_formatter.plain_text_only = dstore.rc_plain_text_only shell.magic_xmode(dstore.xmode) # Store new mode and inform dstore.mode = bool(1-int(mode)) mode_label = ['OFF','ON'][dstore.mode] print 'Doctest mode is:', mode_label def magic_gui(self, parameter_s=''): """Enable or disable IPython GUI event loop integration. %gui [GUINAME] This magic replaces IPython's threaded shells that were activated using the (pylab/wthread/etc.) command line flags. GUI toolkits can now be enabled at runtime and keyboard interrupts should work without any problems. The following toolkits are supported: wxPython, PyQt4, PyGTK, Tk and Cocoa (OSX):: %gui wx # enable wxPython event loop integration %gui qt4|qt # enable PyQt4 event loop integration %gui gtk # enable PyGTK event loop integration %gui gtk3 # enable Gtk3 event loop integration %gui tk # enable Tk event loop integration %gui OSX # enable Cocoa event loop integration # (requires %matplotlib 1.1) %gui # disable all event loop integration WARNING: after any of these has been called you can simply create an application object, but DO NOT start the event loop yourself, as we have already handled that. """ opts, arg = self.parse_options(parameter_s, '') if arg=='': arg = None try: return self.enable_gui(arg) except Exception as e: # print simple error message, rather than traceback if we can't # hook up the GUI error(str(e)) def magic_install_ext(self, parameter_s): """Download and install an extension from a URL, e.g.:: %install_ext https://bitbucket.org/birkenfeld/ipython-physics/raw/d1310a2ab15d/physics.py The URL should point to an importable Python module - either a .py file or a .zip file. Parameters: -n filename : Specify a name for the file, rather than taking it from the URL. """ opts, args = self.parse_options(parameter_s, 'n:') try: filename = self.extension_manager.install_extension(args, opts.get('n')) except ValueError as e: print e return filename = os.path.basename(filename) print "Installed %s. To use it, type:" % filename print " %%load_ext %s" % os.path.splitext(filename)[0] def magic_load_ext(self, module_str): """Load an IPython extension by its module name.""" return self.extension_manager.load_extension(module_str) def magic_unload_ext(self, module_str): """Unload an IPython extension by its module name.""" self.extension_manager.unload_extension(module_str) def magic_reload_ext(self, module_str): """Reload an IPython extension by its module name.""" self.extension_manager.reload_extension(module_str) def magic_install_profiles(self, s): """%install_profiles has been deprecated.""" print '\n'.join([ "%install_profiles has been deprecated.", "Use `ipython profile list` to view available profiles.", "Requesting a profile with `ipython profile create `", "or `ipython --profile=` will start with the bundled", "profile of that name if it exists." ]) def magic_install_default_config(self, s): """%install_default_config has been deprecated.""" print '\n'.join([ "%install_default_config has been deprecated.", "Use `ipython profile create ` to initialize a profile", "with the default config files.", "Add `--reset` to overwrite already existing config files with defaults." ]) @skip_doctest def magic_pylab(self, s): """Load numpy and matplotlib to work interactively. %pylab [GUINAME] This function lets you activate pylab (matplotlib, numpy and interactive support) at any point during an IPython session. It will import at the top level numpy as np, pyplot as plt, matplotlib, pylab and mlab, as well as all names from numpy and pylab. If you are using the inline matplotlib backend for embedded figures, you can adjust its behavior via the %config magic:: # enable SVG figures, necessary for SVG+XHTML export in the qtconsole In [1]: %config InlineBackend.figure_format = 'svg' # change the behavior of closing all figures at the end of each # execution (cell), or allowing reuse of active figures across # cells: In [2]: %config InlineBackend.close_figures = False Parameters ---------- guiname : optional One of the valid arguments to the %gui magic ('qt', 'wx', 'gtk', 'osx' or 'tk'). If given, the corresponding Matplotlib backend is used, otherwise matplotlib's default (which you can override in your matplotlib config file) is used. Examples -------- In this case, where the MPL default is TkAgg:: In [2]: %pylab Welcome to pylab, a matplotlib-based Python environment. Backend in use: TkAgg For more information, type 'help(pylab)'. But you can explicitly request a different backend:: In [3]: %pylab qt Welcome to pylab, a matplotlib-based Python environment. Backend in use: Qt4Agg For more information, type 'help(pylab)'. """ if Application.initialized(): app = Application.instance() try: import_all_status = app.pylab_import_all except AttributeError: import_all_status = True else: import_all_status = True self.shell.enable_pylab(s, import_all=import_all_status) def magic_tb(self, s): """Print the last traceback with the currently active exception mode. See %xmode for changing exception reporting modes.""" self.shell.showtraceback() @skip_doctest def magic_precision(self, s=''): """Set floating point precision for pretty printing. Can set either integer precision or a format string. If numpy has been imported and precision is an int, numpy display precision will also be set, via ``numpy.set_printoptions``. If no argument is given, defaults will be restored. Examples -------- :: In [1]: from math import pi In [2]: %precision 3 Out[2]: u'%.3f' In [3]: pi Out[3]: 3.142 In [4]: %precision %i Out[4]: u'%i' In [5]: pi Out[5]: 3 In [6]: %precision %e Out[6]: u'%e' In [7]: pi**10 Out[7]: 9.364805e+04 In [8]: %precision Out[8]: u'%r' In [9]: pi**10 Out[9]: 93648.047476082982 """ ptformatter = self.shell.display_formatter.formatters['text/plain'] ptformatter.float_precision = s return ptformatter.float_format @magic_arguments.magic_arguments() @magic_arguments.argument( '-e', '--export', action='store_true', default=False, help='Export IPython history as a notebook. The filename argument ' 'is used to specify the notebook name and format. For example ' 'a filename of notebook.ipynb will result in a notebook name ' 'of "notebook" and a format of "xml". Likewise using a ".json" ' 'or ".py" file extension will write the notebook in the json ' 'or py formats.' ) @magic_arguments.argument( '-f', '--format', help='Convert an existing IPython notebook to a new format. This option ' 'specifies the new format and can have the values: xml, json, py. ' 'The target filename is chosen automatically based on the new ' 'format. The filename argument gives the name of the source file.' ) @magic_arguments.argument( 'filename', type=unicode, help='Notebook name or filename' ) def magic_notebook(self, s): """Export and convert IPython notebooks. This function can export the current IPython history to a notebook file or can convert an existing notebook file into a different format. For example, to export the history to "foo.ipynb" do "%notebook -e foo.ipynb". To export the history to "foo.py" do "%notebook -e foo.py". To convert "foo.ipynb" to "foo.json" do "%notebook -f json foo.ipynb". Possible formats include (json/ipynb, py). """ args = magic_arguments.parse_argstring(self.magic_notebook, s) from IPython.nbformat import current args.filename = unquote_filename(args.filename) if args.export: fname, name, format = current.parse_filename(args.filename) cells = [] hist = list(self.history_manager.get_range()) for session, prompt_number, input in hist[:-1]: cells.append(current.new_code_cell(prompt_number=prompt_number, input=input)) worksheet = current.new_worksheet(cells=cells) nb = current.new_notebook(name=name,worksheets=[worksheet]) with io.open(fname, 'w', encoding='utf-8') as f: current.write(nb, f, format); elif args.format is not None: old_fname, old_name, old_format = current.parse_filename(args.filename) new_format = args.format if new_format == u'xml': raise ValueError('Notebooks cannot be written as xml.') elif new_format == u'ipynb' or new_format == u'json': new_fname = old_name + u'.ipynb' new_format = u'json' elif new_format == u'py': new_fname = old_name + u'.py' else: raise ValueError('Invalid notebook format: %s' % new_format) with io.open(old_fname, 'r', encoding='utf-8') as f: nb = current.read(f, old_format) with io.open(new_fname, 'w', encoding='utf-8') as f: current.write(nb, f, new_format) def magic_config(self, s): """configure IPython %config Class[.trait=value] This magic exposes most of the IPython config system. Any Configurable class should be able to be configured with the simple line:: %config Class.trait=value Where `value` will be resolved in the user's namespace, if it is an expression or variable name. Examples -------- To see what classes are available for config, pass no arguments:: In [1]: %config Available objects for config: TerminalInteractiveShell HistoryManager PrefilterManager AliasManager IPCompleter PromptManager DisplayFormatter To view what is configurable on a given class, just pass the class name:: In [2]: %config IPCompleter IPCompleter options ----------------- IPCompleter.omit__names= Current: 2 Choices: (0, 1, 2) Instruct the completer to omit private method names Specifically, when completing on ``object.``. When 2 [default]: all names that start with '_' will be excluded. When 1: all 'magic' names (``__foo__``) will be excluded. When 0: nothing will be excluded. IPCompleter.merge_completions= Current: True Whether to merge completion results into a single list If False, only the completion results from the first non-empty completer will be returned. IPCompleter.limit_to__all__= Current: False Instruct the completer to use __all__ for the completion Specifically, when completing on ``object.``. When True: only those names in obj.__all__ will be included. When False [default]: the __all__ attribute is ignored IPCompleter.greedy= Current: False Activate greedy completion This will enable completion on elements of lists, results of function calls, etc., but can be unsafe because the code is actually evaluated on TAB. but the real use is in setting values:: In [3]: %config IPCompleter.greedy = True and these values are read from the user_ns if they are variables:: In [4]: feeling_greedy=False In [5]: %config IPCompleter.greedy = feeling_greedy """ from IPython.config.loader import Config # some IPython objects are Configurable, but do not yet have # any configurable traits. Exclude them from the effects of # this magic, as their presence is just noise: configurables = [ c for c in self.shell.configurables if c.__class__.class_traits(config=True) ] classnames = [ c.__class__.__name__ for c in configurables ] line = s.strip() if not line: # print available configurable names print "Available objects for config:" for name in classnames: print " ", name return elif line in classnames: # `%config TerminalInteractiveShell` will print trait info for # TerminalInteractiveShell c = configurables[classnames.index(line)] cls = c.__class__ help = cls.class_get_help(c) # strip leading '--' from cl-args: help = re.sub(re.compile(r'^--', re.MULTILINE), '', help) print help return elif '=' not in line: raise UsageError("Invalid config statement: %r, should be Class.trait = value" % line) # otherwise, assume we are setting configurables. # leave quotes on args when splitting, because we want # unquoted args to eval in user_ns cfg = Config() exec "cfg."+line in locals(), self.shell.user_ns for configurable in configurables: try: configurable.update_config(cfg) except Exception as e: error(e) # end Magic