"""Enable pyglet to be used interacively with prompt_toolkit """ import sys import time from timeit import default_timer as clock import pyglet # On linux only, window.flip() has a bug that causes an AttributeError on # window close. For details, see: # http://groups.google.com/group/pyglet-users/browse_thread/thread/47c1aab9aa4a3d23/c22f9e819826799e?#c22f9e819826799e if sys.platform.startswith('linux'): def flip(window): try: window.flip() except AttributeError: pass else: def flip(window): window.flip() def inputhook(context): """Run the pyglet event loop by processing pending events only. This keeps processing pending events until stdin is ready. After processing all pending events, a call to time.sleep is inserted. This is needed, otherwise, CPU usage is at 100%. This sleep time should be tuned though for best performance. """ # We need to protect against a user pressing Control-C when IPython is # idle and this is running. We trap KeyboardInterrupt and pass. try: t = clock() while not context.input_is_ready(): pyglet.clock.tick() for window in pyglet.app.windows: window.switch_to() window.dispatch_events() window.dispatch_event('on_draw') flip(window) # We need to sleep at this point to keep the idle CPU load # low. However, if sleep to long, GUI response is poor. As # a compromise, we watch how often GUI events are being processed # and switch between a short and long sleep time. Here are some # stats useful in helping to tune this. # time CPU load # 0.001 13% # 0.005 3% # 0.01 1.5% # 0.05 0.5% used_time = clock() - t if used_time > 10.0: # print 'Sleep for 1 s' # dbg time.sleep(1.0) elif used_time > 0.1: # Few GUI events coming in, so we can sleep longer # print 'Sleep for 0.05 s' # dbg time.sleep(0.05) else: # Many GUI events coming in, so sleep only very little time.sleep(0.001) except KeyboardInterrupt: pass