#!/usr/bin/env python """Run a Monte-Carlo options pricer in parallel.""" #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- import sys import time from IPython.zmq.parallel import client import numpy as np from mcpricer import price_options from matplotlib import pyplot as plt #----------------------------------------------------------------------------- # Setup parameters for the run #----------------------------------------------------------------------------- def ask_question(text, the_type, default): s = '%s [%r]: ' % (text, the_type(default)) result = raw_input(s) if result: return the_type(result) else: return the_type(default) cluster_profile = ask_question("Cluster profile", str, "default") price = ask_question("Initial price", float, 100.0) rate = ask_question("Interest rate", float, 0.05) days = ask_question("Days to expiration", int, 260) paths = ask_question("Number of MC paths", int, 10000) n_strikes = ask_question("Number of strike values", int, 5) min_strike = ask_question("Min strike price", float, 90.0) max_strike = ask_question("Max strike price", float, 110.0) n_sigmas = ask_question("Number of volatility values", int, 5) min_sigma = ask_question("Min volatility", float, 0.1) max_sigma = ask_question("Max volatility", float, 0.4) strike_vals = np.linspace(min_strike, max_strike, n_strikes) sigma_vals = np.linspace(min_sigma, max_sigma, n_sigmas) #----------------------------------------------------------------------------- # Setup for parallel calculation #----------------------------------------------------------------------------- # The Client is used to setup the calculation and works with all # engines. c = client.Client(profile=cluster_profile) # A LoadBalancedView is an interface to the engines that provides dynamic load # balancing at the expense of not knowing which engine will execute the code. view = c.load_balanced_view() # Initialize the common code on the engines. This Python module has the # price_options function that prices the options. #----------------------------------------------------------------------------- # Perform parallel calculation #----------------------------------------------------------------------------- print "Running parallel calculation over strike prices and volatilities..." print "Strike prices: ", strike_vals print "Volatilities: ", sigma_vals sys.stdout.flush() # Submit tasks to the TaskClient for each (strike, sigma) pair as a MapTask. t1 = time.time() async_results = [] for strike in strike_vals: for sigma in sigma_vals: ar = view.apply_async(price_options, price, strike, sigma, rate, days, paths) async_results.append(ar) print "Submitted tasks: ", len(async_results) sys.stdout.flush() # Block until all tasks are completed. c.wait(async_results) t2 = time.time() t = t2-t1 print "Parallel calculation completed, time = %s s" % t print "Collecting results..." # Get the results using TaskClient.get_task_result. results = [ar.get() for ar in async_results] # Assemble the result into a structured NumPy array. prices = np.empty(n_strikes*n_sigmas, dtype=[('ecall',float),('eput',float),('acall',float),('aput',float)] ) for i, price in enumerate(results): prices[i] = tuple(price) prices.shape = (n_strikes, n_sigmas) strike_mesh, sigma_mesh = np.meshgrid(strike_vals, sigma_vals) print "Results are available: strike_mesh, sigma_mesh, prices" print "To plot results type 'plot_options(sigma_mesh, strike_mesh, prices)'" #----------------------------------------------------------------------------- # Utilities #----------------------------------------------------------------------------- def plot_options(sigma_mesh, strike_mesh, prices): """ Make a contour plot of the option price in (sigma, strike) space. """ plt.figure(1) plt.subplot(221) plt.contourf(sigma_mesh, strike_mesh, prices['ecall']) plt.axis('tight') plt.colorbar() plt.title('European Call') plt.ylabel("Strike Price") plt.subplot(222) plt.contourf(sigma_mesh, strike_mesh, prices['acall']) plt.axis('tight') plt.colorbar() plt.title("Asian Call") plt.subplot(223) plt.contourf(sigma_mesh, strike_mesh, prices['eput']) plt.axis('tight') plt.colorbar() plt.title("European Put") plt.xlabel("Volatility") plt.ylabel("Strike Price") plt.subplot(224) plt.contourf(sigma_mesh, strike_mesh, prices['aput']) plt.axis('tight') plt.colorbar() plt.title("Asian Put") plt.xlabel("Volatility")