##// END OF EJS Templates
Update minified YUI to version 2.9 built from Source....
Update minified YUI to version 2.9 built from Source. yui.2.9.js used to be a minified version of YUI 2.9 until 5143b8df576c updated it to something else and applied more aggresive minification. We stick to a clean but minified version 2.9. The license of YUI is BSD 3-clause, as described on http://yuilibrary.com/license/ . Since the minified version combines with GPLv3'd Javascript, it is only GPLv3'd compliant to distribute this Object Code version with the Corresponding Source (or offer therefor). This yui.2.9.js is built from Source this way: git clone https://github.com/yui/builder git clone https://github.com/yui/yui2 cd yui2/ git checkout hudson-yui2-2800 ln -sf JumpToPageDropDown.js src/paginator/js/JumpToPageDropdown.js # work around inconsistent casing rm -f tmp.js for m in yahoo event dom connection animation dragdrop element datasource autocomplete container event-delegate json datatable paginator; do rm -f build/$m/$m.js; ( cd src/$m && ant build deploybuild ) && sed -e 's,@VERSION@,2.9.0,g' -e 's,@BUILD@,2800,g' build/$m/$m.js >> tmp.js done java -jar ../builder/componentbuild/lib/yuicompressor/yuicompressor-2.4.4.jar tmp.js -o yui.2.9.js The source is mirrored and available on https://kallithea-scm.org/repos/mirror .

File last commit:

r4029:c9bcfe2d default
r4131:31f510a8 rhodecode-2.2.5-gpl
Show More
index.html
98 lines | 3.7 KiB | text/html | HtmlLexer
<!doctype html>
<html>
<head>
<meta charset="utf-8">
<title>CodeMirror: sTeX mode</title>
<link rel="stylesheet" href="../../lib/codemirror.css">
<script src="../../lib/codemirror.js"></script>
<script src="stex.js"></script>
<style>.CodeMirror {background: #f8f8f8;}</style>
<link rel="stylesheet" href="../../doc/docs.css">
</head>
<body>
<h1>CodeMirror: sTeX mode</h1>
<form><textarea id="code" name="code">
\begin{module}[id=bbt-size]
\importmodule[balanced-binary-trees]{balanced-binary-trees}
\importmodule[\KWARCslides{dmath/en/cardinality}]{cardinality}
\begin{frame}
\frametitle{Size Lemma for Balanced Trees}
\begin{itemize}
\item
\begin{assertion}[id=size-lemma,type=lemma]
Let $G=\tup{V,E}$ be a \termref[cd=binary-trees]{balanced binary tree}
of \termref[cd=graph-depth,name=vertex-depth]{depth}$n>i$, then the set
$\defeq{\livar{V}i}{\setst{\inset{v}{V}}{\gdepth{v} = i}}$ of
\termref[cd=graphs-intro,name=node]{nodes} at
\termref[cd=graph-depth,name=vertex-depth]{depth} $i$ has
\termref[cd=cardinality,name=cardinality]{cardinality} $\power2i$.
\end{assertion}
\item
\begin{sproof}[id=size-lemma-pf,proofend=,for=size-lemma]{via induction over the depth $i$.}
\begin{spfcases}{We have to consider two cases}
\begin{spfcase}{$i=0$}
\begin{spfstep}[display=flow]
then $\livar{V}i=\set{\livar{v}r}$, where $\livar{v}r$ is the root, so
$\eq{\card{\livar{V}0},\card{\set{\livar{v}r}},1,\power20}$.
\end{spfstep}
\end{spfcase}
\begin{spfcase}{$i>0$}
\begin{spfstep}[display=flow]
then $\livar{V}{i-1}$ contains $\power2{i-1}$ vertexes
\begin{justification}[method=byIH](IH)\end{justification}
\end{spfstep}
\begin{spfstep}
By the \begin{justification}[method=byDef]definition of a binary
tree\end{justification}, each $\inset{v}{\livar{V}{i-1}}$ is a leaf or has
two children that are at depth $i$.
\end{spfstep}
\begin{spfstep}
As $G$ is \termref[cd=balanced-binary-trees,name=balanced-binary-tree]{balanced} and $\gdepth{G}=n>i$, $\livar{V}{i-1}$ cannot contain
leaves.
\end{spfstep}
\begin{spfstep}[type=conclusion]
Thus $\eq{\card{\livar{V}i},{\atimes[cdot]{2,\card{\livar{V}{i-1}}}},{\atimes[cdot]{2,\power2{i-1}}},\power2i}$.
\end{spfstep}
\end{spfcase}
\end{spfcases}
\end{sproof}
\item
\begin{assertion}[id=fbbt,type=corollary]
A fully balanced tree of depth $d$ has $\power2{d+1}-1$ nodes.
\end{assertion}
\item
\begin{sproof}[for=fbbt,id=fbbt-pf]{}
\begin{spfstep}
Let $\defeq{G}{\tup{V,E}}$ be a fully balanced tree
\end{spfstep}
\begin{spfstep}
Then $\card{V}=\Sumfromto{i}1d{\power2i}= \power2{d+1}-1$.
\end{spfstep}
\end{sproof}
\end{itemize}
\end{frame}
\begin{note}
\begin{omtext}[type=conclusion,for=binary-tree]
This shows that balanced binary trees grow in breadth very quickly, a consequence of
this is that they are very shallow (and this compute very fast), which is the essence of
the next result.
\end{omtext}
\end{note}
\end{module}
%%% Local Variables:
%%% mode: LaTeX
%%% TeX-master: "all"
%%% End: \end{document}
</textarea></form>
<script>
var editor = CodeMirror.fromTextArea(document.getElementById("code"), {});
</script>
<p><strong>MIME types defined:</strong> <code>text/x-stex</code>.</p>
<p><strong>Parsing/Highlighting Tests:</strong> <a href="../../test/index.html#stex_*">normal</a>, <a href="../../test/index.html#verbose,stex_*">verbose</a>.</p>
</body>
</html>