|
|
<!doctype html>
|
|
|
<html>
|
|
|
<head>
|
|
|
<meta charset="utf-8">
|
|
|
<title>CodeMirror: sTeX mode</title>
|
|
|
<link rel="stylesheet" href="../../lib/codemirror.css">
|
|
|
<script src="../../lib/codemirror.js"></script>
|
|
|
<script src="stex.js"></script>
|
|
|
<style>.CodeMirror {background: #f8f8f8;}</style>
|
|
|
<link rel="stylesheet" href="../../doc/docs.css">
|
|
|
</head>
|
|
|
<body>
|
|
|
<h1>CodeMirror: sTeX mode</h1>
|
|
|
<form><textarea id="code" name="code">
|
|
|
\begin{module}[id=bbt-size]
|
|
|
\importmodule[balanced-binary-trees]{balanced-binary-trees}
|
|
|
\importmodule[\KWARCslides{dmath/en/cardinality}]{cardinality}
|
|
|
|
|
|
\begin{frame}
|
|
|
\frametitle{Size Lemma for Balanced Trees}
|
|
|
\begin{itemize}
|
|
|
\item
|
|
|
\begin{assertion}[id=size-lemma,type=lemma]
|
|
|
Let $G=\tup{V,E}$ be a \termref[cd=binary-trees]{balanced binary tree}
|
|
|
of \termref[cd=graph-depth,name=vertex-depth]{depth}$n>i$, then the set
|
|
|
$\defeq{\livar{V}i}{\setst{\inset{v}{V}}{\gdepth{v} = i}}$ of
|
|
|
\termref[cd=graphs-intro,name=node]{nodes} at
|
|
|
\termref[cd=graph-depth,name=vertex-depth]{depth} $i$ has
|
|
|
\termref[cd=cardinality,name=cardinality]{cardinality} $\power2i$.
|
|
|
\end{assertion}
|
|
|
\item
|
|
|
\begin{sproof}[id=size-lemma-pf,proofend=,for=size-lemma]{via induction over the depth $i$.}
|
|
|
\begin{spfcases}{We have to consider two cases}
|
|
|
\begin{spfcase}{$i=0$}
|
|
|
\begin{spfstep}[display=flow]
|
|
|
then $\livar{V}i=\set{\livar{v}r}$, where $\livar{v}r$ is the root, so
|
|
|
$\eq{\card{\livar{V}0},\card{\set{\livar{v}r}},1,\power20}$.
|
|
|
\end{spfstep}
|
|
|
\end{spfcase}
|
|
|
\begin{spfcase}{$i>0$}
|
|
|
\begin{spfstep}[display=flow]
|
|
|
then $\livar{V}{i-1}$ contains $\power2{i-1}$ vertexes
|
|
|
\begin{justification}[method=byIH](IH)\end{justification}
|
|
|
\end{spfstep}
|
|
|
\begin{spfstep}
|
|
|
By the \begin{justification}[method=byDef]definition of a binary
|
|
|
tree\end{justification}, each $\inset{v}{\livar{V}{i-1}}$ is a leaf or has
|
|
|
two children that are at depth $i$.
|
|
|
\end{spfstep}
|
|
|
\begin{spfstep}
|
|
|
As $G$ is \termref[cd=balanced-binary-trees,name=balanced-binary-tree]{balanced} and $\gdepth{G}=n>i$, $\livar{V}{i-1}$ cannot contain
|
|
|
leaves.
|
|
|
\end{spfstep}
|
|
|
\begin{spfstep}[type=conclusion]
|
|
|
Thus $\eq{\card{\livar{V}i},{\atimes[cdot]{2,\card{\livar{V}{i-1}}}},{\atimes[cdot]{2,\power2{i-1}}},\power2i}$.
|
|
|
\end{spfstep}
|
|
|
\end{spfcase}
|
|
|
\end{spfcases}
|
|
|
\end{sproof}
|
|
|
\item
|
|
|
\begin{assertion}[id=fbbt,type=corollary]
|
|
|
A fully balanced tree of depth $d$ has $\power2{d+1}-1$ nodes.
|
|
|
\end{assertion}
|
|
|
\item
|
|
|
\begin{sproof}[for=fbbt,id=fbbt-pf]{}
|
|
|
\begin{spfstep}
|
|
|
Let $\defeq{G}{\tup{V,E}}$ be a fully balanced tree
|
|
|
\end{spfstep}
|
|
|
\begin{spfstep}
|
|
|
Then $\card{V}=\Sumfromto{i}1d{\power2i}= \power2{d+1}-1$.
|
|
|
\end{spfstep}
|
|
|
\end{sproof}
|
|
|
\end{itemize}
|
|
|
\end{frame}
|
|
|
\begin{note}
|
|
|
\begin{omtext}[type=conclusion,for=binary-tree]
|
|
|
This shows that balanced binary trees grow in breadth very quickly, a consequence of
|
|
|
this is that they are very shallow (and this compute very fast), which is the essence of
|
|
|
the next result.
|
|
|
\end{omtext}
|
|
|
\end{note}
|
|
|
\end{module}
|
|
|
|
|
|
%%% Local Variables:
|
|
|
%%% mode: LaTeX
|
|
|
%%% TeX-master: "all"
|
|
|
%%% End: \end{document}
|
|
|
</textarea></form>
|
|
|
<script>
|
|
|
var editor = CodeMirror.fromTextArea(document.getElementById("code"), {});
|
|
|
</script>
|
|
|
|
|
|
<p><strong>MIME types defined:</strong> <code>text/x-stex</code>.</p>
|
|
|
|
|
|
<p><strong>Parsing/Highlighting Tests:</strong> <a href="../../test/index.html#stex_*">normal</a>, <a href="../../test/index.html#verbose,stex_*">verbose</a>.</p>
|
|
|
|
|
|
</body>
|
|
|
</html>
|
|
|
|