##// END OF EJS Templates
style: vertically align comment bubble icon...
style: vertically align comment bubble icon The icon of the comment bubble is slightly off-center vertically (too low). This problem can be solved by reducing the line height instead of using the default of 20px.

File last commit:

r7270:b45994c0 merge default
r7305:618f2158 default
Show More
setup.rst
599 lines | 20.9 KiB | text/x-rst | RstLexer

Setup

Preparing front-end

Temporarily, in the current Kallithea version, some extra steps are required to build front-end files:

Find the right kallithea/public/less path with:

python -c "import os, kallithea; print os.path.join(os.path.dirname(os.path.abspath(kallithea.__file__)), 'public', 'less')"

Then run:

npm install
npm run less

Setting up Kallithea

First, you will need to create a Kallithea configuration file. Run the following command to do so:

gearbox make-config my.ini

This will create the file my.ini in the current directory. This configuration file contains the various settings for Kallithea, e.g. proxy port, email settings, usage of static files, cache, Celery settings, and logging. Extra settings can be specified like:

gearbox make-config my.ini host=8.8.8.8 "[handler_console]" formatter=color_formatter

Next, you need to create the databases used by Kallithea. It is recommended to use PostgreSQL or SQLite (default). If you choose a database other than the default, ensure you properly adjust the database URL in your my.ini configuration file to use this other database. Kallithea currently supports PostgreSQL, SQLite and MySQL databases. Create the database by running the following command:

gearbox setup-db -c my.ini

This will prompt you for a "root" path. This "root" path is the location where Kallithea will store all of its repositories on the current machine. After entering this "root" path setup-db will also prompt you for a username and password for the initial admin account which setup-db sets up for you.

The setup-db values can also be given on the command line. Example:

gearbox setup-db -c my.ini --user=nn --password=secret --email=nn@example.com --repos=/srv/repos

The setup-db command will create all needed tables and an admin account. When choosing a root path you can either use a new empty location, or a location which already contains existing repositories. If you choose a location which contains existing repositories Kallithea will add all of the repositories at the chosen location to its database. (Note: make sure you specify the correct path to the root).

Note

the given path for Mercurial repositories must be write accessible for the application. It's very important since the Kallithea web interface will work without write access, but when trying to do a push it will fail with permission denied errors unless it has write access.

You are now ready to use Kallithea. To run it simply execute:

gearbox serve -c my.ini
  • This command runs the Kallithea server. The web app should be available at http://127.0.0.1:5000. The IP address and port is configurable via the configuration file created in the previous step.
  • Log in to Kallithea using the admin account created when running setup-db.
  • The default permissions on each repository is read, and the owner is admin. Remember to update these if needed.
  • In the admin panel you can toggle LDAP, anonymous, and permissions settings, as well as edit more advanced options on users and repositories.

Internationalization (i18n support)

The Kallithea web interface is automatically displayed in the user's preferred language, as indicated by the browser. Thus, different users may see the application in different languages. If the requested language is not available (because the translation file for that language does not yet exist or is incomplete), the language specified in setting i18n.lang in the Kallithea configuration file is used as fallback. If no fallback language is explicitly specified, English is used.

If you want to disable automatic language detection and instead configure a fixed language regardless of user preference, set i18n.enabled = false and set i18n.lang to the desired language (or leave empty for English).

Using Kallithea with SSH

Kallithea currently only hosts repositories using http and https. (The addition of ssh hosting is a planned future feature.) However you can easily use ssh in parallel with Kallithea. (Repository access via ssh is a standard "out of the box" feature of Mercurial and you can use this to access any of the repositories that Kallithea is hosting. See PublishingRepositories)

Kallithea repository structures are kept in directories with the same name as the project. When using repository groups, each group is a subdirectory. This allows you to easily use ssh for accessing repositories.

In order to use ssh you need to make sure that your web server and the users' login accounts have the correct permissions set on the appropriate directories.

Note

These permissions are independent of any permissions you have set up using the Kallithea web interface.

If your main directory (the same as set in Kallithea settings) is for example set to /srv/repos and the repository you are using is named kallithea, then to clone via ssh you should run:

hg clone ssh://user@kallithea.example.com/srv/repos/kallithea

Using other external tools such as mercurial-server or using ssh key-based authentication is fully supported.

Note

In an advanced setup, in order for your ssh access to use the same permissions as set up via the Kallithea web interface, you can create an authentication hook to connect to the Kallithea db and run check functions for permissions against that.

Integration with issue trackers

Kallithea provides a simple integration with issue trackers. It's possible to define a regular expression that will match an issue ID in commit messages, and have that replaced with a URL to the issue.

This is achieved with following three variables in the ini file:

issue_pat = #(\d+)
issue_server_link = https://issues.example.com/{repo}/issue/\1
issue_sub =

issue_pat is the regular expression describing which strings in commit messages will be treated as issue references. The expression can/should have one or more parenthesized groups that can later be referred to in issue_server_link and issue_sub (see below). If you prefer, named groups can be used instead of simple parenthesized groups.

If the pattern should only match if it is preceded by whitespace, add the following string before the actual pattern: (?:^|(?<=\s)). If the pattern should only match if it is followed by whitespace, add the following string after the actual pattern: (?:$|(?=\s)). These expressions use lookbehind and lookahead assertions of the Python regular expression module to avoid the whitespace to be part of the actual pattern, otherwise the link text will also contain that whitespace.

Matched issue references are replaced with the link specified in issue_server_link, in which any backreferences are resolved. Backreferences can be \1, \2, ... or for named groups \g<groupname>. The special token {repo} is replaced with the full repository path (including repository groups), while token {repo_name} is replaced with the repository name (without repository groups).

The link text is determined by issue_sub, which can be a string containing backreferences to the groups specified in issue_pat. If issue_sub is empty, then the text matched by issue_pat is used verbatim.

The example settings shown above match issues in the format #<number>. This will cause the text #300 to be transformed into a link:

<a href="https://issues.example.com/example_repo/issue/300">#300</a>

The following example transforms a text starting with either of 'pullrequest', 'pull request' or 'PR', followed by an optional space, then a pound character (#) and one or more digits, into a link with the text 'PR #' followed by the digits:

issue_pat = (pullrequest|pull request|PR) ?#(\d+)
issue_server_link = https://issues.example.com/\2
issue_sub = PR #\2

The following example demonstrates how to require whitespace before the issue reference in order for it to be recognized, such that the text issue#123 will not cause a match, but issue #123 will:

issue_pat = (?:^|(?<=\s))#(\d+)
issue_server_link = https://issues.example.com/\1
issue_sub =

If needed, more than one pattern can be specified by appending a unique suffix to the variables. For example, also demonstrating the use of named groups:

issue_pat_wiki = wiki-(?P<pagename>\S+)
issue_server_link_wiki = https://wiki.example.com/\g<pagename>
issue_sub_wiki = WIKI-\g<pagename>

With these settings, wiki pages can be referenced as wiki-some-id, and every such reference will be transformed into:

<a href="https://wiki.example.com/some-id">WIKI-some-id</a>

Refer to the Python regular expression documentation for more details about the supported syntax in issue_pat, issue_server_link and issue_sub.

Hook management

Hooks can be managed in similar way to that used in .hgrc files. To manage hooks, choose Admin > Settings > Hooks.

The built-in hooks cannot be modified, though they can be enabled or disabled in the VCS section.

To add another custom hook simply fill in the first textbox with <name>.<hook_type> and the second with the hook path. Example hooks can be found in kallithea.lib.hooks.

Changing default encoding

By default, Kallithea uses UTF-8 encoding. This is configurable as default_encoding in the .ini file. This affects many parts in Kallithea including user names, filenames, and encoding of commit messages. In addition Kallithea can detect if the chardet library is installed. If chardet is detected Kallithea will fallback to it when there are encode/decode errors.

The Mercurial encoding is configurable as hgencoding. It is similar to setting the HGENCODING environment variable, but will override it.

Celery configuration

Kallithea can use the distributed task queue system Celery to run tasks like cloning repositories or sending emails.

Kallithea will in most setups work perfectly fine out of the box (without Celery), executing all tasks in the web server process. Some tasks can however take some time to run and it can be better to run such tasks asynchronously in a separate process so the web server can focus on serving web requests.

For installation and configuration of Celery, see the Celery documentation. Note that Celery requires a message broker service like RabbitMQ (recommended) or Redis.

The use of Celery is configured in the Kallithea ini configuration file. To enable it, simply set:

use_celery = true

and add or change the celery.* and broker.* configuration variables.

Remember that the ini files use the format with '.' and not with '_' like Celery. So for example setting BROKER_HOST in Celery means setting broker.host in the configuration file.

To start the Celery process, run:

gearbox celeryd -c <configfile.ini>

Extra options to the Celery worker can be passed after -- - see -- -h for more info.

Note

Make sure you run this command from the same virtualenv, and with the same user that Kallithea runs.

HTTPS support

Kallithea will by default generate URLs based on the WSGI environment.

Alternatively, you can use some special configuration settings to control directly which scheme/protocol Kallithea will use when generating URLs:

  • With https_fixup = true, the scheme will be taken from the X-Url-Scheme, X-Forwarded-Scheme or X-Forwarded-Proto HTTP header (default http).
  • With force_https = true the default will be https.
  • With use_htsts = true, Kallithea will set Strict-Transport-Security when using https.

Nginx virtual host example

Sample config for Nginx using proxy:

upstream kallithea {
    server 127.0.0.1:5000;
    # add more instances for load balancing
    #server 127.0.0.1:5001;
    #server 127.0.0.1:5002;
}

## gist alias
server {
   listen          443;
   server_name     gist.example.com;
   access_log      /var/log/nginx/gist.access.log;
   error_log       /var/log/nginx/gist.error.log;

   ssl on;
   ssl_certificate     gist.your.kallithea.server.crt;
   ssl_certificate_key gist.your.kallithea.server.key;

   ssl_session_timeout 5m;

   ssl_protocols SSLv3 TLSv1;
   ssl_ciphers DHE-RSA-AES256-SHA:DHE-RSA-AES128-SHA:EDH-RSA-DES-CBC3-SHA:AES256-SHA:DES-CBC3-SHA:AES128-SHA:RC4-SHA:RC4-MD5;
   ssl_prefer_server_ciphers on;

   rewrite ^/(.+)$ https://kallithea.example.com/_admin/gists/$1;
   rewrite (.*)    https://kallithea.example.com/_admin/gists;
}

server {
   listen          443;
   server_name     kallithea.example.com
   access_log      /var/log/nginx/kallithea.access.log;
   error_log       /var/log/nginx/kallithea.error.log;

   ssl on;
   ssl_certificate     your.kallithea.server.crt;
   ssl_certificate_key your.kallithea.server.key;

   ssl_session_timeout 5m;

   ssl_protocols SSLv3 TLSv1;
   ssl_ciphers DHE-RSA-AES256-SHA:DHE-RSA-AES128-SHA:EDH-RSA-DES-CBC3-SHA:AES256-SHA:DES-CBC3-SHA:AES128-SHA:RC4-SHA:RC4-MD5;
   ssl_prefer_server_ciphers on;

   ## uncomment root directive if you want to serve static files by nginx
   ## requires static_files = false in .ini file
   #root /srv/kallithea/kallithea/kallithea/public;
   include         /etc/nginx/proxy.conf;
   location / {
        try_files $uri @kallithea;
   }

   location @kallithea {
        proxy_pass      http://127.0.0.1:5000;
   }

}

Here's the proxy.conf. It's tuned so it will not timeout on long pushes or large pushes:

proxy_redirect              off;
proxy_set_header            Host $host;
## needed for container auth
#proxy_set_header            REMOTE_USER $remote_user;
#proxy_set_header            X-Forwarded-User $remote_user;
proxy_set_header            X-Url-Scheme $scheme;
proxy_set_header            X-Host $http_host;
proxy_set_header            X-Real-IP $remote_addr;
proxy_set_header            X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_set_header            Proxy-host $proxy_host;
proxy_buffering             off;
proxy_connect_timeout       7200;
proxy_send_timeout          7200;
proxy_read_timeout          7200;
proxy_buffers               8 32k;
client_max_body_size        1024m;
client_body_buffer_size     128k;
large_client_header_buffers 8 64k;

Apache virtual host reverse proxy example

Here is a sample configuration file for Apache using proxy:

<VirtualHost *:80>
        ServerName kallithea.example.com

        <Proxy *>
          # For Apache 2.4 and later:
          Require all granted

          # For Apache 2.2 and earlier, instead use:
          # Order allow,deny
          # Allow from all
        </Proxy>

        #important !
        #Directive to properly generate url (clone url) for Kallithea
        ProxyPreserveHost On

        #kallithea instance
        ProxyPass / http://127.0.0.1:5000/
        ProxyPassReverse / http://127.0.0.1:5000/

        #to enable https use line below
        #SetEnvIf X-Url-Scheme https HTTPS=1
</VirtualHost>

Additional tutorial http://pylonsbook.com/en/1.1/deployment.html#using-apache-to-proxy-requests-to-pylons

Apache as subdirectory

Apache subdirectory part:

<Location /PREFIX >
  ProxyPass http://127.0.0.1:5000/PREFIX
  ProxyPassReverse http://127.0.0.1:5000/PREFIX
  SetEnvIf X-Url-Scheme https HTTPS=1
</Location>

Besides the regular apache setup you will need to add the following line into [app:main] section of your .ini file:

filter-with = proxy-prefix

Add the following at the end of the .ini file:

[filter:proxy-prefix]
use = egg:PasteDeploy#prefix
prefix = /PREFIX

then change PREFIX into your chosen prefix

Apache with mod_wsgi

Alternatively, Kallithea can be set up with Apache under mod_wsgi. For that, you'll need to:

  • Install mod_wsgi. If using a Debian-based distro, you can install the package libapache2-mod-wsgi:

    aptitude install libapache2-mod-wsgi
    
  • Enable mod_wsgi:

    a2enmod wsgi
    
  • Add global Apache configuration to tell mod_wsgi that Python only will be used in the WSGI processes and shouldn't be initialized in the Apache processes:

    WSGIRestrictEmbedded On
    
  • Create a wsgi dispatch script, like the one below. Make sure you check that the paths correctly point to where you installed Kallithea and its Python Virtual Environment.

  • Enable the WSGIScriptAlias directive for the WSGI dispatch script, as in the following example. Once again, check the paths are correctly specified.

Here is a sample excerpt from an Apache Virtual Host configuration file:

WSGIDaemonProcess kallithea processes=5 threads=1 maximum-requests=100 \
    python-home=/srv/kallithea/venv
WSGIProcessGroup kallithea
WSGIScriptAlias / /srv/kallithea/dispatch.wsgi
WSGIPassAuthorization On

Or if using a dispatcher WSGI script with proper virtualenv activation:

WSGIDaemonProcess kallithea processes=5 threads=1 maximum-requests=100
WSGIProcessGroup kallithea
WSGIScriptAlias / /srv/kallithea/dispatch.wsgi
WSGIPassAuthorization On

Apache will by default run as a special Apache user, on Linux systems usually www-data or apache. If you need to have the repositories directory owned by a different user, use the user and group options to WSGIDaemonProcess to set the name of the user and group.

Example WSGI dispatch script:

import os
os.environ['PYTHON_EGG_CACHE'] = '/srv/kallithea/.egg-cache'

# sometimes it's needed to set the current dir
os.chdir('/srv/kallithea/')

import site
site.addsitedir("/srv/kallithea/venv/lib/python2.7/site-packages")

ini = '/srv/kallithea/my.ini'
from paste.script.util.logging_config import fileConfig
fileConfig(ini)
from paste.deploy import loadapp
application = loadapp('config:' + ini)

Or using proper virtualenv activation:

activate_this = '/srv/kallithea/venv/bin/activate_this.py'
execfile(activate_this, dict(__file__=activate_this))

import os
os.environ['HOME'] = '/srv/kallithea'

ini = '/srv/kallithea/kallithea.ini'
from paste.script.util.logging_config import fileConfig
fileConfig(ini)
from paste.deploy import loadapp
application = loadapp('config:' + ini)

Other configuration files

A number of example init.d scripts can be found in the init.d directory of the Kallithea source.