##// END OF EJS Templates
docs: update email documentation for TurboGears2...
docs: update email documentation for TurboGears2 Small update to the documentation.

File last commit:

r6510:21308503 default
r6527:e223c36e default
Show More
setup.rst
877 lines | 29.7 KiB | text/x-rst | RstLexer

Setup

Setting up Kallithea

First, you will need to create a Kallithea configuration file. Run the following command to do so:

gearbox make-config my.ini

This will create the file my.ini in the current directory. This configuration file contains the various settings for Kallithea, e.g. proxy port, email settings, usage of static files, cache, Celery settings, and logging.

Next, you need to create the databases used by Kallithea. It is recommended to use PostgreSQL or SQLite (default). If you choose a database other than the default, ensure you properly adjust the database URL in your my.ini configuration file to use this other database. Kallithea currently supports PostgreSQL, SQLite and MySQL databases. Create the database by running the following command:

gearbox setup-db -c my.ini

This will prompt you for a "root" path. This "root" path is the location where Kallithea will store all of its repositories on the current machine. After entering this "root" path setup-db will also prompt you for a username and password for the initial admin account which setup-db sets up for you.

The setup-db values can also be given on the command line. Example:

gearbox setup-db -c my.ini --user=nn --password=secret --email=nn@example.com --repos=/srv/repos

The setup-db command will create all needed tables and an admin account. When choosing a root path you can either use a new empty location, or a location which already contains existing repositories. If you choose a location which contains existing repositories Kallithea will add all of the repositories at the chosen location to its database. (Note: make sure you specify the correct path to the root).

Note

the given path for Mercurial repositories must be write accessible for the application. It's very important since the Kallithea web interface will work without write access, but when trying to do a push it will fail with permission denied errors unless it has write access.

You are now ready to use Kallithea. To run it simply execute:

gearbox serve -c my.ini
  • This command runs the Kallithea server. The web app should be available at http://127.0.0.1:5000. The IP address and port is configurable via the configuration file created in the previous step.
  • Log in to Kallithea using the admin account created when running setup-db.
  • The default permissions on each repository is read, and the owner is admin. Remember to update these if needed.
  • In the admin panel you can toggle LDAP, anonymous, and permissions settings, as well as edit more advanced options on users and repositories.

Using Kallithea with SSH

Kallithea currently only hosts repositories using http and https. (The addition of ssh hosting is a planned future feature.) However you can easily use ssh in parallel with Kallithea. (Repository access via ssh is a standard "out of the box" feature of Mercurial and you can use this to access any of the repositories that Kallithea is hosting. See PublishingRepositories)

Kallithea repository structures are kept in directories with the same name as the project. When using repository groups, each group is a subdirectory. This allows you to easily use ssh for accessing repositories.

In order to use ssh you need to make sure that your web server and the users' login accounts have the correct permissions set on the appropriate directories.

Note

These permissions are independent of any permissions you have set up using the Kallithea web interface.

If your main directory (the same as set in Kallithea settings) is for example set to /srv/repos and the repository you are using is named kallithea, then to clone via ssh you should run:

hg clone ssh://user@kallithea.example.com/srv/repos/kallithea

Using other external tools such as mercurial-server or using ssh key-based authentication is fully supported.

Note

In an advanced setup, in order for your ssh access to use the same permissions as set up via the Kallithea web interface, you can create an authentication hook to connect to the Kallithea db and run check functions for permissions against that.

Setting up LDAP support

Kallithea supports LDAP authentication. In order to use LDAP, you have to install the python-ldap package. This package is available via PyPI, so you can install it by running:

pip install python-ldap

Note

python-ldap requires some libraries to be installed on your system, so before installing it check that you have at least the openldap and sasl libraries.

Choose Admin > Authentication, click the kallithea.lib.auth_modules.auth_ldap button and then Save, to enable the LDAP plugin and configure its settings.

Here's a typical LDAP setup:

Connection settings
Enable LDAP          = checked
Host                 = host.example.com
Account              = <account>
Password             = <password>
Connection Security  = LDAPS
Certificate Checks   = DEMAND

Search settings
Base DN              = CN=users,DC=host,DC=example,DC=org
LDAP Filter          = (&(objectClass=user)(!(objectClass=computer)))
LDAP Search Scope    = SUBTREE

Attribute mappings
Login Attribute      = uid
First Name Attribute = firstName
Last Name Attribute  = lastName
Email Attribute      = mail

If your user groups are placed in an Organisation Unit (OU) structure, the Search Settings configuration differs:

Search settings
Base DN              = DC=host,DC=example,DC=org
LDAP Filter          = (&(memberOf=CN=your user group,OU=subunit,OU=unit,DC=host,DC=example,DC=org)(objectClass=user))
LDAP Search Scope    = SUBTREE
Enable LDAP : required
Whether to use LDAP for authenticating users.
Host : required
LDAP server hostname or IP address. Can be also a comma separated list of servers to support LDAP fail-over.
Port : optional
Defaults to 389 for PLAIN un-encrypted LDAP and START_TLS. Defaults to 636 for LDAPS.
Account : optional
Only required if the LDAP server does not allow anonymous browsing of records. This should be a special account for record browsing. This will require LDAP Password below.
Password : optional
Only required if the LDAP server does not allow anonymous browsing of records.
Connection Security : required

Defines the connection to LDAP server

PLAIN
Plain unencrypted LDAP connection. This will by default use Port 389.
LDAPS
Use secure LDAPS connections according to Certificate Checks configuration. This will by default use Port 636.
START_TLS
Use START TLS according to Certificate Checks configuration on an apparently "plain" LDAP connection. This will by default use Port 389.
Certificate Checks : optional

How SSL certificates verification is handled -- this is only useful when Enable LDAPS is enabled. Only DEMAND or HARD offer full SSL security with mandatory certificate validation, while the other options are susceptible to man-in-the-middle attacks.

NEVER
A serve certificate will never be requested or checked.
ALLOW
A server certificate is requested. Failure to provide a certificate or providing a bad certificate will not terminate the session.
TRY
A server certificate is requested. Failure to provide a certificate does not halt the session; providing a bad certificate halts the session.
DEMAND
A server certificate is requested and must be provided and authenticated for the session to proceed.
HARD
The same as DEMAND.
Custom CA Certificates : optional
Directory used by OpenSSL to find CAs for validating the LDAP server certificate. Python 2.7.10 and later default to using the system certificate store, and this should thus not be necessary when using certificates signed by a CA trusted by the system. It can be set to something like /etc/openldap/cacerts on older systems or if using self-signed certificates.
Base DN : required
The Distinguished Name (DN) where searches for users will be performed. Searches can be controlled by LDAP Filter and LDAP Search Scope.
LDAP Filter : optional
A LDAP filter defined by RFC 2254. This is more useful when LDAP Search Scope is set to SUBTREE. The filter is useful for limiting which LDAP objects are identified as representing Users for authentication. The filter is augmented by Login Attribute below. This can commonly be left blank.
LDAP Search Scope : required

This limits how far LDAP will search for a matching object.

BASE
Only allows searching of Base DN and is usually not what you want.
ONELEVEL
Searches all entries under Base DN, but not Base DN itself.
SUBTREE
Searches all entries below Base DN, but not Base DN itself. When using SUBTREE LDAP Filter is useful to limit object location.
Login Attribute : required

The LDAP record attribute that will be matched as the USERNAME or ACCOUNT used to connect to Kallithea. This will be added to LDAP Filter for locating the User object. If LDAP Filter is specified as "LDAPFILTER", Login Attribute is specified as "uid" and the user has connected as "jsmith" then the LDAP Filter will be augmented as below

(&(LDAPFILTER)(uid=jsmith))
First Name Attribute : required
The LDAP record attribute which represents the user's first name.
Last Name Attribute : required
The LDAP record attribute which represents the user's last name.
Email Attribute : required
The LDAP record attribute which represents the user's email address.

If all data are entered correctly, and python-ldap is properly installed users should be granted access to Kallithea with LDAP accounts. At this time user information is copied from LDAP into the Kallithea user database. This means that updates of an LDAP user object may not be reflected as a user update in Kallithea.

If You have problems with LDAP access and believe You entered correct information check out the Kallithea logs, any error messages sent from LDAP will be saved there.

Active Directory

Kallithea can use Microsoft Active Directory for user authentication. This is done through an LDAP or LDAPS connection to Active Directory. The following LDAP configuration settings are typical for using Active Directory

Base DN              = OU=SBSUsers,OU=Users,OU=MyBusiness,DC=v3sys,DC=local
Login Attribute      = sAMAccountName
First Name Attribute = givenName
Last Name Attribute  = sn
Email Attribute     = mail

All other LDAP settings will likely be site-specific and should be appropriately configured.

Authentication by container or reverse-proxy

Kallithea supports delegating the authentication of users to its WSGI container, or to a reverse-proxy server through which all clients access the application.

When these authentication methods are enabled in Kallithea, it uses the username that the container/proxy (Apache or Nginx, etc.) provides and doesn't perform the authentication itself. The authorization, however, is still done by Kallithea according to its settings.

When a user logs in for the first time using these authentication methods, a matching user account is created in Kallithea with default permissions. An administrator can then modify it using Kallithea's admin interface.

It's also possible for an administrator to create accounts and configure their permissions before the user logs in for the first time, using the :ref:`create-user` API.

Container-based authentication

In a container-based authentication setup, Kallithea reads the user name from the REMOTE_USER server variable provided by the WSGI container.

After setting up your container (see Apache with mod_wsgi), you'll need to configure it to require authentication on the location configured for Kallithea.

Proxy pass-through authentication

In a proxy pass-through authentication setup, Kallithea reads the user name from the X-Forwarded-User request header, which should be configured to be sent by the reverse-proxy server.

After setting up your proxy solution (see Apache virtual host reverse proxy example, Apache as subdirectory or Nginx virtual host example), you'll need to configure the authentication and add the username in a request header named X-Forwarded-User.

For example, the following config section for Apache sets a subdirectory in a reverse-proxy setup with basic auth:

<Location /someprefix>
  ProxyPass http://127.0.0.1:5000/someprefix
  ProxyPassReverse http://127.0.0.1:5000/someprefix
  SetEnvIf X-Url-Scheme https HTTPS=1

  AuthType Basic
  AuthName "Kallithea authentication"
  AuthUserFile /srv/kallithea/.htpasswd
  Require valid-user

  RequestHeader unset X-Forwarded-User

  RewriteEngine On
  RewriteCond %{LA-U:REMOTE_USER} (.+)
  RewriteRule .* - [E=RU:%1]
  RequestHeader set X-Forwarded-User %{RU}e
</Location>

Setting metadata in container/reverse-proxy

When a new user account is created on the first login, Kallithea has no information about the user's email and full name. So you can set some additional request headers like in the example below. In this example the user is authenticated via Kerberos and an Apache mod_python fixup handler is used to get the user information from a LDAP server. But you could set the request headers however you want.

<Location /someprefix>
  ProxyPass http://127.0.0.1:5000/someprefix
  ProxyPassReverse http://127.0.0.1:5000/someprefix
  SetEnvIf X-Url-Scheme https HTTPS=1

  AuthName "Kerberos Login"
  AuthType Kerberos
  Krb5Keytab /etc/apache2/http.keytab
  KrbMethodK5Passwd off
  KrbVerifyKDC on
  Require valid-user

  PythonFixupHandler ldapmetadata

  RequestHeader set X_REMOTE_USER %{X_REMOTE_USER}e
  RequestHeader set X_REMOTE_EMAIL %{X_REMOTE_EMAIL}e
  RequestHeader set X_REMOTE_FIRSTNAME %{X_REMOTE_FIRSTNAME}e
  RequestHeader set X_REMOTE_LASTNAME %{X_REMOTE_LASTNAME}e
</Location>
from mod_python import apache
import ldap

LDAP_SERVER = "ldaps://server.mydomain.com:636"
LDAP_USER = ""
LDAP_PASS = ""
LDAP_ROOT = "dc=mydomain,dc=com"
LDAP_FILTER = "sAMAccountName=%s"
LDAP_ATTR_LIST = ['sAMAccountName','givenname','sn','mail']

def fixuphandler(req):
    if req.user is None:
        # no user to search for
        return apache.OK
    else:
        try:
            if('\\' in req.user):
                username = req.user.split('\\')[1]
            elif('@' in req.user):
                username = req.user.split('@')[0]
            else:
                username = req.user
            l = ldap.initialize(LDAP_SERVER)
            l.simple_bind_s(LDAP_USER, LDAP_PASS)
            r = l.search_s(LDAP_ROOT, ldap.SCOPE_SUBTREE, LDAP_FILTER % username, attrlist=LDAP_ATTR_LIST)

            req.subprocess_env['X_REMOTE_USER'] = username
            req.subprocess_env['X_REMOTE_EMAIL'] = r[0][1]['mail'][0].lower()
            req.subprocess_env['X_REMOTE_FIRSTNAME'] = "%s" % r[0][1]['givenname'][0]
            req.subprocess_env['X_REMOTE_LASTNAME'] = "%s" % r[0][1]['sn'][0]
        except Exception, e:
            apache.log_error("error getting data from ldap %s" % str(e), apache.APLOG_ERR)

        return apache.OK

Note

If you enable proxy pass-through authentication, make sure your server is only accessible through the proxy. Otherwise, any client would be able to forge the authentication header and could effectively become authenticated using any account of their liking.

Integration with issue trackers

Kallithea provides a simple integration with issue trackers. It's possible to define a regular expression that will match an issue ID in commit messages, and have that replaced with a URL to the issue. To enable this simply uncomment the following variables in the ini file:

issue_pat = (?:^#|\s#)(\w+)
issue_server_link = https://issues.example.com/{repo}/issue/{id}
issue_prefix = #

issue_pat is the regular expression describing which strings in commit messages will be treated as issue references. A match group in parentheses should be used to specify the actual issue id.

The default expression matches issues in the format #<number>, e.g., #300.

Matched issue references are replaced with the link specified in issue_server_link. {id} is replaced with the issue ID, and {repo} with the repository name. Since the # is stripped away, issue_prefix is prepended to the link text. issue_prefix doesn't necessarily need to be #: if you set issue prefix to ISSUE- this will generate a URL in the format:

<a href="https://issues.example.com/example_repo/issue/300">ISSUE-300</a>

If needed, more than one pattern can be specified by appending a unique suffix to the variables. For example:

issue_pat_wiki = (?:wiki-)(.+)
issue_server_link_wiki = https://wiki.example.com/{id}
issue_prefix_wiki = WIKI-

With these settings, wiki pages can be referenced as wiki-some-id, and every such reference will be transformed into:

<a href="https://wiki.example.com/some-id">WIKI-some-id</a>

Hook management

Hooks can be managed in similar way to that used in .hgrc files. To manage hooks, choose Admin > Settings > Hooks.

The built-in hooks cannot be modified, though they can be enabled or disabled in the VCS section.

To add another custom hook simply fill in the first textbox with <name>.<hook_type> and the second with the hook path. Example hooks can be found in kallithea.lib.hooks.

Changing default encoding

By default, Kallithea uses UTF-8 encoding. This is configurable as default_encoding in the .ini file. This affects many parts in Kallithea including user names, filenames, and encoding of commit messages. In addition Kallithea can detect if the chardet library is installed. If chardet is detected Kallithea will fallback to it when there are encode/decode errors.

Celery configuration

Kallithea can use the distributed task queue system Celery to run tasks like cloning repositories or sending emails.

Kallithea will in most setups work perfectly fine out of the box (without Celery), executing all tasks in the web server process. Some tasks can however take some time to run and it can be better to run such tasks asynchronously in a separate process so the web server can focus on serving web requests.

For installation and configuration of Celery, see the Celery documentation. Note that Celery requires a message broker service like RabbitMQ (recommended) or Redis.

The use of Celery is configured in the Kallithea ini configuration file. To enable it, simply set:

use_celery = true

and add or change the celery.* and broker.* configuration variables.

Remember that the ini files use the format with '.' and not with '_' like Celery. So for example setting BROKER_HOST in Celery means setting broker.host in the configuration file.

To start the Celery process, run:

gearbox celeryd -c <configfile.ini>

Extra options to the Celery worker can be passed after -- - see -- -h for more info.

Note

Make sure you run this command from the same virtualenv, and with the same user that Kallithea runs.

HTTPS support

Kallithea will by default generate URLs based on the WSGI environment.

Alternatively, you can use some special configuration settings to control directly which scheme/protocol Kallithea will use when generating URLs:

  • With https_fixup = true, the scheme will be taken from the X-Url-Scheme, X-Forwarded-Scheme or X-Forwarded-Proto HTTP header (default http).
  • With force_https = true the default will be https.
  • With use_htsts = true, Kallithea will set Strict-Transport-Security when using https.

Nginx virtual host example

Sample config for Nginx using proxy:

upstream kallithea {
    server 127.0.0.1:5000;
    # add more instances for load balancing
    #server 127.0.0.1:5001;
    #server 127.0.0.1:5002;
}

## gist alias
server {
   listen          443;
   server_name     gist.example.com;
   access_log      /var/log/nginx/gist.access.log;
   error_log       /var/log/nginx/gist.error.log;

   ssl on;
   ssl_certificate     gist.your.kallithea.server.crt;
   ssl_certificate_key gist.your.kallithea.server.key;

   ssl_session_timeout 5m;

   ssl_protocols SSLv3 TLSv1;
   ssl_ciphers DHE-RSA-AES256-SHA:DHE-RSA-AES128-SHA:EDH-RSA-DES-CBC3-SHA:AES256-SHA:DES-CBC3-SHA:AES128-SHA:RC4-SHA:RC4-MD5;
   ssl_prefer_server_ciphers on;

   rewrite ^/(.+)$ https://kallithea.example.com/_admin/gists/$1;
   rewrite (.*)    https://kallithea.example.com/_admin/gists;
}

server {
   listen          443;
   server_name     kallithea.example.com
   access_log      /var/log/nginx/kallithea.access.log;
   error_log       /var/log/nginx/kallithea.error.log;

   ssl on;
   ssl_certificate     your.kallithea.server.crt;
   ssl_certificate_key your.kallithea.server.key;

   ssl_session_timeout 5m;

   ssl_protocols SSLv3 TLSv1;
   ssl_ciphers DHE-RSA-AES256-SHA:DHE-RSA-AES128-SHA:EDH-RSA-DES-CBC3-SHA:AES256-SHA:DES-CBC3-SHA:AES128-SHA:RC4-SHA:RC4-MD5;
   ssl_prefer_server_ciphers on;

   ## uncomment root directive if you want to serve static files by nginx
   ## requires static_files = false in .ini file
   #root /srv/kallithea/kallithea/kallithea/public;
   include         /etc/nginx/proxy.conf;
   location / {
        try_files $uri @kallithea;
   }

   location @kallithea {
        proxy_pass      http://127.0.0.1:5000;
   }

}

Here's the proxy.conf. It's tuned so it will not timeout on long pushes or large pushes:

proxy_redirect              off;
proxy_set_header            Host $host;
## needed for container auth
#proxy_set_header            REMOTE_USER $remote_user;
#proxy_set_header            X-Forwarded-User $remote_user;
proxy_set_header            X-Url-Scheme $scheme;
proxy_set_header            X-Host $http_host;
proxy_set_header            X-Real-IP $remote_addr;
proxy_set_header            X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_set_header            Proxy-host $proxy_host;
proxy_buffering             off;
proxy_connect_timeout       7200;
proxy_send_timeout          7200;
proxy_read_timeout          7200;
proxy_buffers               8 32k;
client_max_body_size        1024m;
client_body_buffer_size     128k;
large_client_header_buffers 8 64k;

Apache virtual host reverse proxy example

Here is a sample configuration file for Apache using proxy:

<VirtualHost *:80>
        ServerName kallithea.example.com

        <Proxy *>
          # For Apache 2.4 and later:
          Require all granted

          # For Apache 2.2 and earlier, instead use:
          # Order allow,deny
          # Allow from all
        </Proxy>

        #important !
        #Directive to properly generate url (clone url) for Kallithea
        ProxyPreserveHost On

        #kallithea instance
        ProxyPass / http://127.0.0.1:5000/
        ProxyPassReverse / http://127.0.0.1:5000/

        #to enable https use line below
        #SetEnvIf X-Url-Scheme https HTTPS=1
</VirtualHost>

Additional tutorial http://pylonsbook.com/en/1.1/deployment.html#using-apache-to-proxy-requests-to-pylons

Apache as subdirectory

Apache subdirectory part:

<Location /<someprefix> >
  ProxyPass http://127.0.0.1:5000/<someprefix>
  ProxyPassReverse http://127.0.0.1:5000/<someprefix>
  SetEnvIf X-Url-Scheme https HTTPS=1
</Location>

Besides the regular apache setup you will need to add the following line into [app:main] section of your .ini file:

filter-with = proxy-prefix

Add the following at the end of the .ini file:

[filter:proxy-prefix]
use = egg:PasteDeploy#prefix
prefix = /<someprefix>

then change <someprefix> into your chosen prefix

Apache with mod_wsgi

Alternatively, Kallithea can be set up with Apache under mod_wsgi. For that, you'll need to:

  • Install mod_wsgi. If using a Debian-based distro, you can install the package libapache2-mod-wsgi:

    aptitude install libapache2-mod-wsgi
    
  • Enable mod_wsgi:

    a2enmod wsgi
    
  • Add global Apache configuration to tell mod_wsgi that Python only will be used in the WSGI processes and shouldn't be initialized in the Apache processes:

    WSGIRestrictEmbedded On
    
  • Create a wsgi dispatch script, like the one below. Make sure you check that the paths correctly point to where you installed Kallithea and its Python Virtual Environment.

  • Enable the WSGIScriptAlias directive for the WSGI dispatch script, as in the following example. Once again, check the paths are correctly specified.

Here is a sample excerpt from an Apache Virtual Host configuration file:

WSGIDaemonProcess kallithea processes=5 threads=1 maximum-requests=100 \
    python-home=/srv/kallithea/venv
WSGIProcessGroup kallithea
WSGIScriptAlias / /srv/kallithea/dispatch.wsgi
WSGIPassAuthorization On

Or if using a dispatcher WSGI script with proper virtualenv activation:

WSGIDaemonProcess kallithea processes=5 threads=1 maximum-requests=100
WSGIProcessGroup kallithea
WSGIScriptAlias / /srv/kallithea/dispatch.wsgi
WSGIPassAuthorization On

Apache will by default run as a special Apache user, on Linux systems usually www-data or apache. If you need to have the repositories directory owned by a different user, use the user and group options to WSGIDaemonProcess to set the name of the user and group.

Example WSGI dispatch script:

import os
os.environ["HGENCODING"] = "UTF-8"
os.environ['PYTHON_EGG_CACHE'] = '/srv/kallithea/.egg-cache'

# sometimes it's needed to set the current dir
os.chdir('/srv/kallithea/')

import site
site.addsitedir("/srv/kallithea/venv/lib/python2.7/site-packages")

ini = '/srv/kallithea/my.ini'
from paste.script.util.logging_config import fileConfig
fileConfig(ini)
from paste.deploy import loadapp
application = loadapp('config:' + ini)

Or using proper virtualenv activation:

activate_this = '/srv/kallithea/venv/bin/activate_this.py'
execfile(activate_this, dict(__file__=activate_this))

import os
os.environ['HOME'] = '/srv/kallithea'

ini = '/srv/kallithea/kallithea.ini'
from paste.script.util.logging_config import fileConfig
fileConfig(ini)
from paste.deploy import loadapp
application = loadapp('config:' + ini)

Other configuration files

A number of example init.d scripts can be found in the init.d directory of the Kallithea source.