xdiffi.c
1130 lines
| 29.2 KiB
| text/x-c
|
CLexer
Jun Wu
|
r36689 | /* | ||
* LibXDiff by Davide Libenzi ( File Differential Library ) | ||||
* Copyright (C) 2003 Davide Libenzi | ||||
* | ||||
* This library is free software; you can redistribute it and/or | ||||
* modify it under the terms of the GNU Lesser General Public | ||||
* License as published by the Free Software Foundation; either | ||||
* version 2.1 of the License, or (at your option) any later version. | ||||
* | ||||
* This library is distributed in the hope that it will be useful, | ||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | ||||
* Lesser General Public License for more details. | ||||
* | ||||
* You should have received a copy of the GNU Lesser General Public | ||||
* License along with this library; if not, see | ||||
* <http://www.gnu.org/licenses/>. | ||||
* | ||||
* Davide Libenzi <davidel@xmailserver.org> | ||||
* | ||||
*/ | ||||
#include "xinclude.h" | ||||
#define XDL_MAX_COST_MIN 256 | ||||
#define XDL_HEUR_MIN_COST 256 | ||||
#define XDL_LINE_MAX (long)((1UL << (CHAR_BIT * sizeof(long) - 1)) - 1) | ||||
#define XDL_SNAKE_CNT 20 | ||||
#define XDL_K_HEUR 4 | ||||
Matt Harbison
|
r36741 | /* VC 2008 doesn't know about the inline keyword. */ | ||
#if defined(_MSC_VER) | ||||
#define inline __forceinline | ||||
#endif | ||||
Jun Wu
|
r36689 | |||
typedef struct s_xdpsplit { | ||||
Jun Wu
|
r36840 | int64_t i1, i2; | ||
Jun Wu
|
r36689 | int min_lo, min_hi; | ||
} xdpsplit_t; | ||||
Jun Wu
|
r36840 | static int64_t xdl_split(uint64_t const *ha1, int64_t off1, int64_t lim1, | ||
uint64_t const *ha2, int64_t off2, int64_t lim2, | ||||
int64_t *kvdf, int64_t *kvdb, int need_min, xdpsplit_t *spl, | ||||
Jun Wu
|
r36689 | xdalgoenv_t *xenv); | ||
Jun Wu
|
r36840 | static xdchange_t *xdl_add_change(xdchange_t *xscr, int64_t i1, int64_t i2, int64_t chg1, int64_t chg2); | ||
Jun Wu
|
r36689 | |||
/* | ||||
* See "An O(ND) Difference Algorithm and its Variations", by Eugene Myers. | ||||
* Basically considers a "box" (off1, off2, lim1, lim2) and scan from both | ||||
* the forward diagonal starting from (off1, off2) and the backward diagonal | ||||
* starting from (lim1, lim2). If the K values on the same diagonal crosses | ||||
* returns the furthest point of reach. We might end up having to expensive | ||||
* cases using this algorithm is full, so a little bit of heuristic is needed | ||||
* to cut the search and to return a suboptimal point. | ||||
*/ | ||||
Jun Wu
|
r36840 | static int64_t xdl_split(uint64_t const *ha1, int64_t off1, int64_t lim1, | ||
uint64_t const *ha2, int64_t off2, int64_t lim2, | ||||
int64_t *kvdf, int64_t *kvdb, int need_min, xdpsplit_t *spl, | ||||
Jun Wu
|
r36689 | xdalgoenv_t *xenv) { | ||
Jun Wu
|
r36840 | int64_t dmin = off1 - lim2, dmax = lim1 - off2; | ||
int64_t fmid = off1 - off2, bmid = lim1 - lim2; | ||||
int64_t odd = (fmid - bmid) & 1; | ||||
int64_t fmin = fmid, fmax = fmid; | ||||
int64_t bmin = bmid, bmax = bmid; | ||||
int64_t ec, d, i1, i2, prev1, best, dd, v, k; | ||||
Jun Wu
|
r36689 | |||
/* | ||||
* Set initial diagonal values for both forward and backward path. | ||||
*/ | ||||
kvdf[fmid] = off1; | ||||
kvdb[bmid] = lim1; | ||||
for (ec = 1;; ec++) { | ||||
int got_snake = 0; | ||||
/* | ||||
* We need to extent the diagonal "domain" by one. If the next | ||||
* values exits the box boundaries we need to change it in the | ||||
* opposite direction because (max - min) must be a power of two. | ||||
* Also we initialize the external K value to -1 so that we can | ||||
* avoid extra conditions check inside the core loop. | ||||
*/ | ||||
if (fmin > dmin) | ||||
kvdf[--fmin - 1] = -1; | ||||
else | ||||
++fmin; | ||||
if (fmax < dmax) | ||||
kvdf[++fmax + 1] = -1; | ||||
else | ||||
--fmax; | ||||
for (d = fmax; d >= fmin; d -= 2) { | ||||
if (kvdf[d - 1] >= kvdf[d + 1]) | ||||
i1 = kvdf[d - 1] + 1; | ||||
else | ||||
i1 = kvdf[d + 1]; | ||||
prev1 = i1; | ||||
i2 = i1 - d; | ||||
for (; i1 < lim1 && i2 < lim2 && ha1[i1] == ha2[i2]; i1++, i2++); | ||||
if (i1 - prev1 > xenv->snake_cnt) | ||||
got_snake = 1; | ||||
kvdf[d] = i1; | ||||
if (odd && bmin <= d && d <= bmax && kvdb[d] <= i1) { | ||||
spl->i1 = i1; | ||||
spl->i2 = i2; | ||||
spl->min_lo = spl->min_hi = 1; | ||||
return ec; | ||||
} | ||||
} | ||||
/* | ||||
* We need to extent the diagonal "domain" by one. If the next | ||||
* values exits the box boundaries we need to change it in the | ||||
* opposite direction because (max - min) must be a power of two. | ||||
* Also we initialize the external K value to -1 so that we can | ||||
* avoid extra conditions check inside the core loop. | ||||
*/ | ||||
if (bmin > dmin) | ||||
kvdb[--bmin - 1] = XDL_LINE_MAX; | ||||
else | ||||
++bmin; | ||||
if (bmax < dmax) | ||||
kvdb[++bmax + 1] = XDL_LINE_MAX; | ||||
else | ||||
--bmax; | ||||
for (d = bmax; d >= bmin; d -= 2) { | ||||
if (kvdb[d - 1] < kvdb[d + 1]) | ||||
i1 = kvdb[d - 1]; | ||||
else | ||||
i1 = kvdb[d + 1] - 1; | ||||
prev1 = i1; | ||||
i2 = i1 - d; | ||||
for (; i1 > off1 && i2 > off2 && ha1[i1 - 1] == ha2[i2 - 1]; i1--, i2--); | ||||
if (prev1 - i1 > xenv->snake_cnt) | ||||
got_snake = 1; | ||||
kvdb[d] = i1; | ||||
if (!odd && fmin <= d && d <= fmax && i1 <= kvdf[d]) { | ||||
spl->i1 = i1; | ||||
spl->i2 = i2; | ||||
spl->min_lo = spl->min_hi = 1; | ||||
return ec; | ||||
} | ||||
} | ||||
if (need_min) | ||||
continue; | ||||
/* | ||||
* If the edit cost is above the heuristic trigger and if | ||||
* we got a good snake, we sample current diagonals to see | ||||
* if some of the, have reached an "interesting" path. Our | ||||
* measure is a function of the distance from the diagonal | ||||
* corner (i1 + i2) penalized with the distance from the | ||||
* mid diagonal itself. If this value is above the current | ||||
* edit cost times a magic factor (XDL_K_HEUR) we consider | ||||
* it interesting. | ||||
*/ | ||||
if (got_snake && ec > xenv->heur_min) { | ||||
for (best = 0, d = fmax; d >= fmin; d -= 2) { | ||||
dd = d > fmid ? d - fmid: fmid - d; | ||||
i1 = kvdf[d]; | ||||
i2 = i1 - d; | ||||
v = (i1 - off1) + (i2 - off2) - dd; | ||||
if (v > XDL_K_HEUR * ec && v > best && | ||||
off1 + xenv->snake_cnt <= i1 && i1 < lim1 && | ||||
off2 + xenv->snake_cnt <= i2 && i2 < lim2) { | ||||
for (k = 1; ha1[i1 - k] == ha2[i2 - k]; k++) | ||||
if (k == xenv->snake_cnt) { | ||||
best = v; | ||||
spl->i1 = i1; | ||||
spl->i2 = i2; | ||||
break; | ||||
} | ||||
} | ||||
} | ||||
if (best > 0) { | ||||
spl->min_lo = 1; | ||||
spl->min_hi = 0; | ||||
return ec; | ||||
} | ||||
for (best = 0, d = bmax; d >= bmin; d -= 2) { | ||||
dd = d > bmid ? d - bmid: bmid - d; | ||||
i1 = kvdb[d]; | ||||
i2 = i1 - d; | ||||
v = (lim1 - i1) + (lim2 - i2) - dd; | ||||
if (v > XDL_K_HEUR * ec && v > best && | ||||
off1 < i1 && i1 <= lim1 - xenv->snake_cnt && | ||||
off2 < i2 && i2 <= lim2 - xenv->snake_cnt) { | ||||
for (k = 0; ha1[i1 + k] == ha2[i2 + k]; k++) | ||||
if (k == xenv->snake_cnt - 1) { | ||||
best = v; | ||||
spl->i1 = i1; | ||||
spl->i2 = i2; | ||||
break; | ||||
} | ||||
} | ||||
} | ||||
if (best > 0) { | ||||
spl->min_lo = 0; | ||||
spl->min_hi = 1; | ||||
return ec; | ||||
} | ||||
} | ||||
/* | ||||
* Enough is enough. We spent too much time here and now we collect | ||||
* the furthest reaching path using the (i1 + i2) measure. | ||||
*/ | ||||
if (ec >= xenv->mxcost) { | ||||
Jun Wu
|
r36840 | int64_t fbest, fbest1, bbest, bbest1; | ||
Jun Wu
|
r36689 | |||
fbest = fbest1 = -1; | ||||
for (d = fmax; d >= fmin; d -= 2) { | ||||
i1 = XDL_MIN(kvdf[d], lim1); | ||||
i2 = i1 - d; | ||||
if (lim2 < i2) | ||||
i1 = lim2 + d, i2 = lim2; | ||||
if (fbest < i1 + i2) { | ||||
fbest = i1 + i2; | ||||
fbest1 = i1; | ||||
} | ||||
} | ||||
bbest = bbest1 = XDL_LINE_MAX; | ||||
for (d = bmax; d >= bmin; d -= 2) { | ||||
i1 = XDL_MAX(off1, kvdb[d]); | ||||
i2 = i1 - d; | ||||
if (i2 < off2) | ||||
i1 = off2 + d, i2 = off2; | ||||
if (i1 + i2 < bbest) { | ||||
bbest = i1 + i2; | ||||
bbest1 = i1; | ||||
} | ||||
} | ||||
if ((lim1 + lim2) - bbest < fbest - (off1 + off2)) { | ||||
spl->i1 = fbest1; | ||||
spl->i2 = fbest - fbest1; | ||||
spl->min_lo = 1; | ||||
spl->min_hi = 0; | ||||
} else { | ||||
spl->i1 = bbest1; | ||||
spl->i2 = bbest - bbest1; | ||||
spl->min_lo = 0; | ||||
spl->min_hi = 1; | ||||
} | ||||
return ec; | ||||
} | ||||
} | ||||
} | ||||
/* | ||||
* Rule: "Divide et Impera". Recursively split the box in sub-boxes by calling | ||||
* the box splitting function. Note that the real job (marking changed lines) | ||||
* is done in the two boundary reaching checks. | ||||
*/ | ||||
Jun Wu
|
r36840 | int xdl_recs_cmp(diffdata_t *dd1, int64_t off1, int64_t lim1, | ||
diffdata_t *dd2, int64_t off2, int64_t lim2, | ||||
int64_t *kvdf, int64_t *kvdb, int need_min, xdalgoenv_t *xenv) { | ||||
uint64_t const *ha1 = dd1->ha, *ha2 = dd2->ha; | ||||
Jun Wu
|
r36689 | |||
/* | ||||
* Shrink the box by walking through each diagonal snake (SW and NE). | ||||
*/ | ||||
for (; off1 < lim1 && off2 < lim2 && ha1[off1] == ha2[off2]; off1++, off2++); | ||||
for (; off1 < lim1 && off2 < lim2 && ha1[lim1 - 1] == ha2[lim2 - 1]; lim1--, lim2--); | ||||
/* | ||||
* If one dimension is empty, then all records on the other one must | ||||
* be obviously changed. | ||||
*/ | ||||
if (off1 == lim1) { | ||||
char *rchg2 = dd2->rchg; | ||||
Jun Wu
|
r36840 | int64_t *rindex2 = dd2->rindex; | ||
Jun Wu
|
r36689 | |||
for (; off2 < lim2; off2++) | ||||
rchg2[rindex2[off2]] = 1; | ||||
} else if (off2 == lim2) { | ||||
char *rchg1 = dd1->rchg; | ||||
Jun Wu
|
r36840 | int64_t *rindex1 = dd1->rindex; | ||
Jun Wu
|
r36689 | |||
for (; off1 < lim1; off1++) | ||||
rchg1[rindex1[off1]] = 1; | ||||
} else { | ||||
xdpsplit_t spl; | ||||
spl.i1 = spl.i2 = 0; | ||||
/* | ||||
* Divide ... | ||||
*/ | ||||
if (xdl_split(ha1, off1, lim1, ha2, off2, lim2, kvdf, kvdb, | ||||
need_min, &spl, xenv) < 0) { | ||||
return -1; | ||||
} | ||||
/* | ||||
* ... et Impera. | ||||
*/ | ||||
if (xdl_recs_cmp(dd1, off1, spl.i1, dd2, off2, spl.i2, | ||||
kvdf, kvdb, spl.min_lo, xenv) < 0 || | ||||
xdl_recs_cmp(dd1, spl.i1, lim1, dd2, spl.i2, lim2, | ||||
kvdf, kvdb, spl.min_hi, xenv) < 0) { | ||||
return -1; | ||||
} | ||||
} | ||||
return 0; | ||||
} | ||||
int xdl_do_diff(mmfile_t *mf1, mmfile_t *mf2, xpparam_t const *xpp, | ||||
xdfenv_t *xe) { | ||||
Jun Wu
|
r36840 | int64_t ndiags; | ||
int64_t *kvd, *kvdf, *kvdb; | ||||
Jun Wu
|
r36689 | xdalgoenv_t xenv; | ||
diffdata_t dd1, dd2; | ||||
if (xdl_prepare_env(mf1, mf2, xpp, xe) < 0) { | ||||
return -1; | ||||
} | ||||
/* | ||||
* Allocate and setup K vectors to be used by the differential algorithm. | ||||
* One is to store the forward path and one to store the backward path. | ||||
*/ | ||||
ndiags = xe->xdf1.nreff + xe->xdf2.nreff + 3; | ||||
Jun Wu
|
r36840 | if (!(kvd = (int64_t *) xdl_malloc((2 * ndiags + 2) * sizeof(long)))) { | ||
Jun Wu
|
r36689 | |||
xdl_free_env(xe); | ||||
return -1; | ||||
} | ||||
kvdf = kvd; | ||||
kvdb = kvdf + ndiags; | ||||
kvdf += xe->xdf2.nreff + 1; | ||||
kvdb += xe->xdf2.nreff + 1; | ||||
xenv.mxcost = xdl_bogosqrt(ndiags); | ||||
if (xenv.mxcost < XDL_MAX_COST_MIN) | ||||
xenv.mxcost = XDL_MAX_COST_MIN; | ||||
xenv.snake_cnt = XDL_SNAKE_CNT; | ||||
xenv.heur_min = XDL_HEUR_MIN_COST; | ||||
dd1.nrec = xe->xdf1.nreff; | ||||
dd1.ha = xe->xdf1.ha; | ||||
dd1.rchg = xe->xdf1.rchg; | ||||
dd1.rindex = xe->xdf1.rindex; | ||||
dd2.nrec = xe->xdf2.nreff; | ||||
dd2.ha = xe->xdf2.ha; | ||||
dd2.rchg = xe->xdf2.rchg; | ||||
dd2.rindex = xe->xdf2.rindex; | ||||
if (xdl_recs_cmp(&dd1, 0, dd1.nrec, &dd2, 0, dd2.nrec, | ||||
kvdf, kvdb, (xpp->flags & XDF_NEED_MINIMAL) != 0, &xenv) < 0) { | ||||
xdl_free(kvd); | ||||
xdl_free_env(xe); | ||||
return -1; | ||||
} | ||||
xdl_free(kvd); | ||||
return 0; | ||||
} | ||||
Jun Wu
|
r36840 | static xdchange_t *xdl_add_change(xdchange_t *xscr, int64_t i1, int64_t i2, int64_t chg1, int64_t chg2) { | ||
Jun Wu
|
r36689 | xdchange_t *xch; | ||
if (!(xch = (xdchange_t *) xdl_malloc(sizeof(xdchange_t)))) | ||||
return NULL; | ||||
xch->next = xscr; | ||||
xch->i1 = i1; | ||||
xch->i2 = i2; | ||||
xch->chg1 = chg1; | ||||
xch->chg2 = chg2; | ||||
xch->ignore = 0; | ||||
return xch; | ||||
} | ||||
Jun Wu
|
r36841 | static int recs_match(xrecord_t *rec1, xrecord_t *rec2) | ||
Jun Wu
|
r36689 | { | ||
return (rec1->ha == rec2->ha && | ||||
xdl_recmatch(rec1->ptr, rec1->size, | ||||
Jun Wu
|
r36841 | rec2->ptr, rec2->size)); | ||
Jun Wu
|
r36689 | } | ||
/* | ||||
* If a line is indented more than this, get_indent() just returns this value. | ||||
* This avoids having to do absurd amounts of work for data that are not | ||||
* human-readable text, and also ensures that the output of get_indent fits within | ||||
* an int. | ||||
*/ | ||||
#define MAX_INDENT 200 | ||||
/* | ||||
* Return the amount of indentation of the specified line, treating TAB as 8 | ||||
* columns. Return -1 if line is empty or contains only whitespace. Clamp the | ||||
* output value at MAX_INDENT. | ||||
*/ | ||||
static int get_indent(xrecord_t *rec) | ||||
{ | ||||
Jun Wu
|
r36840 | int64_t i; | ||
Jun Wu
|
r36689 | int ret = 0; | ||
for (i = 0; i < rec->size; i++) { | ||||
char c = rec->ptr[i]; | ||||
if (!XDL_ISSPACE(c)) | ||||
return ret; | ||||
else if (c == ' ') | ||||
ret += 1; | ||||
else if (c == '\t') | ||||
ret += 8 - ret % 8; | ||||
/* ignore other whitespace characters */ | ||||
if (ret >= MAX_INDENT) | ||||
return MAX_INDENT; | ||||
} | ||||
/* The line contains only whitespace. */ | ||||
return -1; | ||||
} | ||||
/* | ||||
* If more than this number of consecutive blank rows are found, just return this | ||||
* value. This avoids requiring O(N^2) work for pathological cases, and also | ||||
* ensures that the output of score_split fits in an int. | ||||
*/ | ||||
#define MAX_BLANKS 20 | ||||
/* Characteristics measured about a hypothetical split position. */ | ||||
struct split_measurement { | ||||
/* | ||||
* Is the split at the end of the file (aside from any blank lines)? | ||||
*/ | ||||
int end_of_file; | ||||
/* | ||||
* How much is the line immediately following the split indented (or -1 if | ||||
* the line is blank): | ||||
*/ | ||||
int indent; | ||||
/* | ||||
* How many consecutive lines above the split are blank? | ||||
*/ | ||||
int pre_blank; | ||||
/* | ||||
* How much is the nearest non-blank line above the split indented (or -1 | ||||
* if there is no such line)? | ||||
*/ | ||||
int pre_indent; | ||||
/* | ||||
* How many lines after the line following the split are blank? | ||||
*/ | ||||
int post_blank; | ||||
/* | ||||
* How much is the nearest non-blank line after the line following the | ||||
* split indented (or -1 if there is no such line)? | ||||
*/ | ||||
int post_indent; | ||||
}; | ||||
struct split_score { | ||||
/* The effective indent of this split (smaller is preferred). */ | ||||
int effective_indent; | ||||
/* Penalty for this split (smaller is preferred). */ | ||||
int penalty; | ||||
}; | ||||
/* | ||||
* Fill m with information about a hypothetical split of xdf above line split. | ||||
*/ | ||||
Jun Wu
|
r36840 | static void measure_split(const xdfile_t *xdf, int64_t split, | ||
Jun Wu
|
r36689 | struct split_measurement *m) | ||
{ | ||||
Jun Wu
|
r36840 | int64_t i; | ||
Jun Wu
|
r36689 | |||
if (split >= xdf->nrec) { | ||||
m->end_of_file = 1; | ||||
m->indent = -1; | ||||
} else { | ||||
m->end_of_file = 0; | ||||
m->indent = get_indent(xdf->recs[split]); | ||||
} | ||||
m->pre_blank = 0; | ||||
m->pre_indent = -1; | ||||
for (i = split - 1; i >= 0; i--) { | ||||
m->pre_indent = get_indent(xdf->recs[i]); | ||||
if (m->pre_indent != -1) | ||||
break; | ||||
m->pre_blank += 1; | ||||
if (m->pre_blank == MAX_BLANKS) { | ||||
m->pre_indent = 0; | ||||
break; | ||||
} | ||||
} | ||||
m->post_blank = 0; | ||||
m->post_indent = -1; | ||||
for (i = split + 1; i < xdf->nrec; i++) { | ||||
m->post_indent = get_indent(xdf->recs[i]); | ||||
if (m->post_indent != -1) | ||||
break; | ||||
m->post_blank += 1; | ||||
if (m->post_blank == MAX_BLANKS) { | ||||
m->post_indent = 0; | ||||
break; | ||||
} | ||||
} | ||||
} | ||||
/* | ||||
* The empirically-determined weight factors used by score_split() below. | ||||
* Larger values means that the position is a less favorable place to split. | ||||
* | ||||
* Note that scores are only ever compared against each other, so multiplying | ||||
* all of these weight/penalty values by the same factor wouldn't change the | ||||
* heuristic's behavior. Still, we need to set that arbitrary scale *somehow*. | ||||
* In practice, these numbers are chosen to be large enough that they can be | ||||
* adjusted relative to each other with sufficient precision despite using | ||||
* integer math. | ||||
*/ | ||||
/* Penalty if there are no non-blank lines before the split */ | ||||
#define START_OF_FILE_PENALTY 1 | ||||
/* Penalty if there are no non-blank lines after the split */ | ||||
#define END_OF_FILE_PENALTY 21 | ||||
/* Multiplier for the number of blank lines around the split */ | ||||
#define TOTAL_BLANK_WEIGHT (-30) | ||||
/* Multiplier for the number of blank lines after the split */ | ||||
#define POST_BLANK_WEIGHT 6 | ||||
/* | ||||
* Penalties applied if the line is indented more than its predecessor | ||||
*/ | ||||
#define RELATIVE_INDENT_PENALTY (-4) | ||||
#define RELATIVE_INDENT_WITH_BLANK_PENALTY 10 | ||||
/* | ||||
* Penalties applied if the line is indented less than both its predecessor and | ||||
* its successor | ||||
*/ | ||||
#define RELATIVE_OUTDENT_PENALTY 24 | ||||
#define RELATIVE_OUTDENT_WITH_BLANK_PENALTY 17 | ||||
/* | ||||
* Penalties applied if the line is indented less than its predecessor but not | ||||
* less than its successor | ||||
*/ | ||||
#define RELATIVE_DEDENT_PENALTY 23 | ||||
#define RELATIVE_DEDENT_WITH_BLANK_PENALTY 17 | ||||
/* | ||||
* We only consider whether the sum of the effective indents for splits are | ||||
* less than (-1), equal to (0), or greater than (+1) each other. The resulting | ||||
* value is multiplied by the following weight and combined with the penalty to | ||||
* determine the better of two scores. | ||||
*/ | ||||
#define INDENT_WEIGHT 60 | ||||
/* | ||||
* Compute a badness score for the hypothetical split whose measurements are | ||||
* stored in m. The weight factors were determined empirically using the tools and | ||||
* corpus described in | ||||
* | ||||
* https://github.com/mhagger/diff-slider-tools | ||||
* | ||||
* Also see that project if you want to improve the weights based on, for example, | ||||
* a larger or more diverse corpus. | ||||
*/ | ||||
static void score_add_split(const struct split_measurement *m, struct split_score *s) | ||||
{ | ||||
/* | ||||
* A place to accumulate penalty factors (positive makes this index more | ||||
* favored): | ||||
*/ | ||||
int post_blank, total_blank, indent, any_blanks; | ||||
if (m->pre_indent == -1 && m->pre_blank == 0) | ||||
s->penalty += START_OF_FILE_PENALTY; | ||||
if (m->end_of_file) | ||||
s->penalty += END_OF_FILE_PENALTY; | ||||
/* | ||||
* Set post_blank to the number of blank lines following the split, | ||||
* including the line immediately after the split: | ||||
*/ | ||||
post_blank = (m->indent == -1) ? 1 + m->post_blank : 0; | ||||
total_blank = m->pre_blank + post_blank; | ||||
/* Penalties based on nearby blank lines: */ | ||||
s->penalty += TOTAL_BLANK_WEIGHT * total_blank; | ||||
s->penalty += POST_BLANK_WEIGHT * post_blank; | ||||
if (m->indent != -1) | ||||
indent = m->indent; | ||||
else | ||||
indent = m->post_indent; | ||||
any_blanks = (total_blank != 0); | ||||
/* Note that the effective indent is -1 at the end of the file: */ | ||||
s->effective_indent += indent; | ||||
if (indent == -1) { | ||||
/* No additional adjustments needed. */ | ||||
} else if (m->pre_indent == -1) { | ||||
/* No additional adjustments needed. */ | ||||
} else if (indent > m->pre_indent) { | ||||
/* | ||||
* The line is indented more than its predecessor. | ||||
*/ | ||||
s->penalty += any_blanks ? | ||||
RELATIVE_INDENT_WITH_BLANK_PENALTY : | ||||
RELATIVE_INDENT_PENALTY; | ||||
} else if (indent == m->pre_indent) { | ||||
/* | ||||
* The line has the same indentation level as its predecessor. | ||||
* No additional adjustments needed. | ||||
*/ | ||||
} else { | ||||
/* | ||||
* The line is indented less than its predecessor. It could be | ||||
* the block terminator of the previous block, but it could | ||||
* also be the start of a new block (e.g., an "else" block, or | ||||
* maybe the previous block didn't have a block terminator). | ||||
* Try to distinguish those cases based on what comes next: | ||||
*/ | ||||
if (m->post_indent != -1 && m->post_indent > indent) { | ||||
/* | ||||
* The following line is indented more. So it is likely | ||||
* that this line is the start of a block. | ||||
*/ | ||||
s->penalty += any_blanks ? | ||||
RELATIVE_OUTDENT_WITH_BLANK_PENALTY : | ||||
RELATIVE_OUTDENT_PENALTY; | ||||
} else { | ||||
/* | ||||
* That was probably the end of a block. | ||||
*/ | ||||
s->penalty += any_blanks ? | ||||
RELATIVE_DEDENT_WITH_BLANK_PENALTY : | ||||
RELATIVE_DEDENT_PENALTY; | ||||
} | ||||
} | ||||
} | ||||
static int score_cmp(struct split_score *s1, struct split_score *s2) | ||||
{ | ||||
/* -1 if s1.effective_indent < s2->effective_indent, etc. */ | ||||
int cmp_indents = ((s1->effective_indent > s2->effective_indent) - | ||||
(s1->effective_indent < s2->effective_indent)); | ||||
return INDENT_WEIGHT * cmp_indents + (s1->penalty - s2->penalty); | ||||
} | ||||
/* | ||||
* Represent a group of changed lines in an xdfile_t (i.e., a contiguous group | ||||
* of lines that was inserted or deleted from the corresponding version of the | ||||
* file). We consider there to be such a group at the beginning of the file, at | ||||
* the end of the file, and between any two unchanged lines, though most such | ||||
* groups will usually be empty. | ||||
* | ||||
* If the first line in a group is equal to the line following the group, then | ||||
* the group can be slid down. Similarly, if the last line in a group is equal | ||||
* to the line preceding the group, then the group can be slid up. See | ||||
* group_slide_down() and group_slide_up(). | ||||
* | ||||
* Note that loops that are testing for changed lines in xdf->rchg do not need | ||||
* index bounding since the array is prepared with a zero at position -1 and N. | ||||
*/ | ||||
struct xdlgroup { | ||||
/* | ||||
* The index of the first changed line in the group, or the index of | ||||
* the unchanged line above which the (empty) group is located. | ||||
*/ | ||||
Jun Wu
|
r36840 | int64_t start; | ||
Jun Wu
|
r36689 | |||
/* | ||||
* The index of the first unchanged line after the group. For an empty | ||||
* group, end is equal to start. | ||||
*/ | ||||
Jun Wu
|
r36840 | int64_t end; | ||
Jun Wu
|
r36689 | }; | ||
/* | ||||
* Initialize g to point at the first group in xdf. | ||||
*/ | ||||
static void group_init(xdfile_t *xdf, struct xdlgroup *g) | ||||
{ | ||||
g->start = g->end = 0; | ||||
while (xdf->rchg[g->end]) | ||||
g->end++; | ||||
} | ||||
/* | ||||
* Move g to describe the next (possibly empty) group in xdf and return 0. If g | ||||
* is already at the end of the file, do nothing and return -1. | ||||
*/ | ||||
static inline int group_next(xdfile_t *xdf, struct xdlgroup *g) | ||||
{ | ||||
if (g->end == xdf->nrec) | ||||
return -1; | ||||
g->start = g->end + 1; | ||||
for (g->end = g->start; xdf->rchg[g->end]; g->end++) | ||||
; | ||||
return 0; | ||||
} | ||||
/* | ||||
* Move g to describe the previous (possibly empty) group in xdf and return 0. | ||||
* If g is already at the beginning of the file, do nothing and return -1. | ||||
*/ | ||||
static inline int group_previous(xdfile_t *xdf, struct xdlgroup *g) | ||||
{ | ||||
if (g->start == 0) | ||||
return -1; | ||||
g->end = g->start - 1; | ||||
for (g->start = g->end; xdf->rchg[g->start - 1]; g->start--) | ||||
; | ||||
return 0; | ||||
} | ||||
/* | ||||
* If g can be slid toward the end of the file, do so, and if it bumps into a | ||||
* following group, expand this group to include it. Return 0 on success or -1 | ||||
* if g cannot be slid down. | ||||
*/ | ||||
Jun Wu
|
r36841 | static int group_slide_down(xdfile_t *xdf, struct xdlgroup *g) | ||
Jun Wu
|
r36689 | { | ||
if (g->end < xdf->nrec && | ||||
Jun Wu
|
r36841 | recs_match(xdf->recs[g->start], xdf->recs[g->end])) { | ||
Jun Wu
|
r36689 | xdf->rchg[g->start++] = 0; | ||
xdf->rchg[g->end++] = 1; | ||||
while (xdf->rchg[g->end]) | ||||
g->end++; | ||||
return 0; | ||||
} else { | ||||
return -1; | ||||
} | ||||
} | ||||
/* | ||||
* If g can be slid toward the beginning of the file, do so, and if it bumps | ||||
* into a previous group, expand this group to include it. Return 0 on success | ||||
* or -1 if g cannot be slid up. | ||||
*/ | ||||
Jun Wu
|
r36841 | static int group_slide_up(xdfile_t *xdf, struct xdlgroup *g) | ||
Jun Wu
|
r36689 | { | ||
if (g->start > 0 && | ||||
Jun Wu
|
r36841 | recs_match(xdf->recs[g->start - 1], xdf->recs[g->end - 1])) { | ||
Jun Wu
|
r36689 | xdf->rchg[--g->start] = 1; | ||
xdf->rchg[--g->end] = 0; | ||||
while (xdf->rchg[g->start - 1]) | ||||
g->start--; | ||||
return 0; | ||||
} else { | ||||
return -1; | ||||
} | ||||
} | ||||
static void xdl_bug(const char *msg) | ||||
{ | ||||
fprintf(stderr, "BUG: %s\n", msg); | ||||
exit(1); | ||||
} | ||||
/* | ||||
Jun Wu
|
r36692 | * For indentation heuristic, skip searching for better slide position after | ||
* checking MAX_BORING lines without finding an improvement. This defends the | ||||
* indentation heuristic logic against pathological cases. The value is not | ||||
* picked scientifically but should be good enough. | ||||
*/ | ||||
#define MAX_BORING 100 | ||||
/* | ||||
Jun Wu
|
r36689 | * Move back and forward change groups for a consistent and pretty diff output. | ||
* This also helps in finding joinable change groups and reducing the diff | ||||
* size. | ||||
*/ | ||||
Jun Wu
|
r36840 | int xdl_change_compact(xdfile_t *xdf, xdfile_t *xdfo, int64_t flags) { | ||
Jun Wu
|
r36689 | struct xdlgroup g, go; | ||
Jun Wu
|
r36840 | int64_t earliest_end, end_matching_other; | ||
int64_t groupsize; | ||||
Jun Wu
|
r36689 | |||
group_init(xdf, &g); | ||||
group_init(xdfo, &go); | ||||
while (1) { | ||||
/* If the group is empty in the to-be-compacted file, skip it: */ | ||||
if (g.end == g.start) | ||||
goto next; | ||||
/* | ||||
* Now shift the change up and then down as far as possible in | ||||
* each direction. If it bumps into any other changes, merge them. | ||||
*/ | ||||
do { | ||||
groupsize = g.end - g.start; | ||||
/* | ||||
* Keep track of the last "end" index that causes this | ||||
* group to align with a group of changed lines in the | ||||
* other file. -1 indicates that we haven't found such | ||||
* a match yet: | ||||
*/ | ||||
end_matching_other = -1; | ||||
/* Shift the group backward as much as possible: */ | ||||
Jun Wu
|
r36841 | while (!group_slide_up(xdf, &g)) | ||
Jun Wu
|
r36689 | if (group_previous(xdfo, &go)) | ||
xdl_bug("group sync broken sliding up"); | ||||
/* | ||||
* This is this highest that this group can be shifted. | ||||
* Record its end index: | ||||
*/ | ||||
earliest_end = g.end; | ||||
if (go.end > go.start) | ||||
end_matching_other = g.end; | ||||
/* Now shift the group forward as far as possible: */ | ||||
while (1) { | ||||
Jun Wu
|
r36841 | if (group_slide_down(xdf, &g)) | ||
Jun Wu
|
r36689 | break; | ||
if (group_next(xdfo, &go)) | ||||
xdl_bug("group sync broken sliding down"); | ||||
if (go.end > go.start) | ||||
end_matching_other = g.end; | ||||
} | ||||
} while (groupsize != g.end - g.start); | ||||
/* | ||||
* If the group can be shifted, then we can possibly use this | ||||
* freedom to produce a more intuitive diff. | ||||
* | ||||
* The group is currently shifted as far down as possible, so the | ||||
* heuristics below only have to handle upwards shifts. | ||||
*/ | ||||
if (g.end == earliest_end) { | ||||
/* no shifting was possible */ | ||||
} else if (end_matching_other != -1) { | ||||
/* | ||||
* Move the possibly merged group of changes back to line | ||||
* up with the last group of changes from the other file | ||||
* that it can align with. | ||||
*/ | ||||
while (go.end == go.start) { | ||||
Jun Wu
|
r36841 | if (group_slide_up(xdf, &g)) | ||
Jun Wu
|
r36689 | xdl_bug("match disappeared"); | ||
if (group_previous(xdfo, &go)) | ||||
xdl_bug("group sync broken sliding to match"); | ||||
} | ||||
} else if (flags & XDF_INDENT_HEURISTIC) { | ||||
/* | ||||
* Indent heuristic: a group of pure add/delete lines | ||||
* implies two splits, one between the end of the "before" | ||||
* context and the start of the group, and another between | ||||
* the end of the group and the beginning of the "after" | ||||
* context. Some splits are aesthetically better and some | ||||
* are worse. We compute a badness "score" for each split, | ||||
* and add the scores for the two splits to define a | ||||
* "score" for each position that the group can be shifted | ||||
* to. Then we pick the shift with the lowest score. | ||||
*/ | ||||
Jun Wu
|
r36840 | int64_t shift, best_shift = -1; | ||
Jun Wu
|
r36689 | struct split_score best_score; | ||
Jun Wu
|
r36692 | /* | ||
* This is O(N * MAX_BLANKS) (N = shift-able lines). | ||||
* Even with MAX_BLANKS bounded to a small value, a | ||||
* large N could still make this loop take several | ||||
* times longer than the main diff algorithm. The | ||||
* "boring" value is to help cut down N to something | ||||
* like (MAX_BORING + groupsize). | ||||
* | ||||
* Scan from bottom to top. So we can exit the loop | ||||
* without compromising the assumption "for a same best | ||||
* score, pick the bottommost shift". | ||||
*/ | ||||
int boring = 0; | ||||
for (shift = g.end; shift >= earliest_end; shift--) { | ||||
Jun Wu
|
r36689 | struct split_measurement m; | ||
struct split_score score = {0, 0}; | ||||
Jun Wu
|
r36692 | int cmp; | ||
Jun Wu
|
r36689 | |||
measure_split(xdf, shift, &m); | ||||
score_add_split(&m, &score); | ||||
measure_split(xdf, shift - groupsize, &m); | ||||
score_add_split(&m, &score); | ||||
Jun Wu
|
r36692 | |||
if (best_shift == -1) { | ||||
cmp = -1; | ||||
} else { | ||||
cmp = score_cmp(&score, &best_score); | ||||
} | ||||
if (cmp < 0) { | ||||
boring = 0; | ||||
Jun Wu
|
r36689 | best_score.effective_indent = score.effective_indent; | ||
best_score.penalty = score.penalty; | ||||
best_shift = shift; | ||||
Jun Wu
|
r36692 | } else { | ||
boring += 1; | ||||
if (boring >= MAX_BORING) | ||||
break; | ||||
Jun Wu
|
r36689 | } | ||
} | ||||
while (g.end > best_shift) { | ||||
Jun Wu
|
r36841 | if (group_slide_up(xdf, &g)) | ||
Jun Wu
|
r36689 | xdl_bug("best shift unreached"); | ||
if (group_previous(xdfo, &go)) | ||||
xdl_bug("group sync broken sliding to blank line"); | ||||
} | ||||
} | ||||
next: | ||||
/* Move past the just-processed group: */ | ||||
if (group_next(xdf, &g)) | ||||
break; | ||||
if (group_next(xdfo, &go)) | ||||
xdl_bug("group sync broken moving to next group"); | ||||
} | ||||
if (!group_next(xdfo, &go)) | ||||
xdl_bug("group sync broken at end of file"); | ||||
return 0; | ||||
} | ||||
int xdl_build_script(xdfenv_t *xe, xdchange_t **xscr) { | ||||
xdchange_t *cscr = NULL, *xch; | ||||
char *rchg1 = xe->xdf1.rchg, *rchg2 = xe->xdf2.rchg; | ||||
Jun Wu
|
r36840 | int64_t i1, i2, l1, l2; | ||
Jun Wu
|
r36689 | |||
/* | ||||
* Trivial. Collects "groups" of changes and creates an edit script. | ||||
*/ | ||||
for (i1 = xe->xdf1.nrec, i2 = xe->xdf2.nrec; i1 >= 0 || i2 >= 0; i1--, i2--) | ||||
if (rchg1[i1 - 1] || rchg2[i2 - 1]) { | ||||
for (l1 = i1; rchg1[i1 - 1]; i1--); | ||||
for (l2 = i2; rchg2[i2 - 1]; i2--); | ||||
if (!(xch = xdl_add_change(cscr, i1, i2, l1 - i1, l2 - i2))) { | ||||
xdl_free_script(cscr); | ||||
return -1; | ||||
} | ||||
cscr = xch; | ||||
} | ||||
*xscr = cscr; | ||||
return 0; | ||||
} | ||||
void xdl_free_script(xdchange_t *xscr) { | ||||
xdchange_t *xch; | ||||
while ((xch = xscr) != NULL) { | ||||
xscr = xscr->next; | ||||
xdl_free(xch); | ||||
} | ||||
} | ||||
Jun Wu
|
r36781 | |||
/* | ||||
* Starting at the passed change atom, find the latest change atom to be included | ||||
* inside the differential hunk according to the specified configuration. | ||||
* Also advance xscr if the first changes must be discarded. | ||||
*/ | ||||
Jun Wu
|
r36842 | xdchange_t *xdl_get_hunk(xdchange_t **xscr) | ||
Jun Wu
|
r36781 | { | ||
xdchange_t *xch, *xchp, *lxch; | ||||
Jun Wu
|
r36840 | uint64_t ignored = 0; /* number of ignored blank lines */ | ||
Jun Wu
|
r36781 | |||
/* remove ignorable changes that are too far before other changes */ | ||||
for (xchp = *xscr; xchp && xchp->ignore; xchp = xchp->next) { | ||||
xch = xchp->next; | ||||
if (xch == NULL || | ||||
Jun Wu
|
r36844 | xch->i1 - (xchp->i1 + xchp->chg1) >= 0) | ||
Jun Wu
|
r36781 | *xscr = xch; | ||
} | ||||
if (*xscr == NULL) | ||||
return NULL; | ||||
lxch = *xscr; | ||||
for (xchp = *xscr, xch = xchp->next; xch; xchp = xch, xch = xch->next) { | ||||
Jun Wu
|
r36840 | int64_t distance = xch->i1 - (xchp->i1 + xchp->chg1); | ||
Jun Wu
|
r36844 | if (distance > 0) | ||
Jun Wu
|
r36781 | break; | ||
Jun Wu
|
r36844 | if (distance < 0 && (!xch->ignore || lxch == xchp)) { | ||
Jun Wu
|
r36781 | lxch = xch; | ||
ignored = 0; | ||||
Jun Wu
|
r36844 | } else if (distance < 0 && xch->ignore) { | ||
Jun Wu
|
r36781 | ignored += xch->chg2; | ||
} else if (lxch != xchp && | ||||
Jun Wu
|
r36844 | xch->i1 + ignored - (lxch->i1 + lxch->chg1) > 0) { | ||
Jun Wu
|
r36781 | break; | ||
} else if (!xch->ignore) { | ||||
lxch = xch; | ||||
ignored = 0; | ||||
} else { | ||||
ignored += xch->chg2; | ||||
} | ||||
} | ||||
return lxch; | ||||
} | ||||
Jun Wu
|
r36689 | static int xdl_call_hunk_func(xdfenv_t *xe, xdchange_t *xscr, xdemitcb_t *ecb, | ||
xdemitconf_t const *xecfg) | ||||
{ | ||||
Jun Wu
|
r36840 | int64_t p = xe->nprefix, s = xe->nsuffix; | ||
Jun Wu
|
r36689 | xdchange_t *xch, *xche; | ||
Jun Wu
|
r36781 | |||
if (!xecfg->hunk_func) | ||||
return -1; | ||||
Jun Wu
|
r36691 | if ((xecfg->flags & XDL_EMIT_BDIFFHUNK) != 0) { | ||
Jun Wu
|
r36840 | int64_t i1 = 0, i2 = 0, n1 = xe->xdf1.nrec, n2 = xe->xdf2.nrec; | ||
Jun Wu
|
r36691 | for (xch = xscr; xch; xch = xche->next) { | ||
Jun Wu
|
r36842 | xche = xdl_get_hunk(&xch); | ||
Jun Wu
|
r36691 | if (!xch) | ||
break; | ||||
Jun Wu
|
r36838 | if (xch != xche) | ||
xdl_bug("xch != xche"); | ||||
xch->i1 += p; | ||||
xch->i2 += p; | ||||
Jun Wu
|
r36691 | if (xch->i1 > i1 || xch->i2 > i2) { | ||
if (xecfg->hunk_func(i1, xch->i1, i2, xch->i2, ecb->priv) < 0) | ||||
return -1; | ||||
} | ||||
i1 = xche->i1 + xche->chg1; | ||||
i2 = xche->i2 + xche->chg2; | ||||
} | ||||
Jun Wu
|
r36838 | if (xecfg->hunk_func(i1, n1 + p + s, i2, n2 + p + s, | ||
ecb->priv) < 0) | ||||
Jun Wu
|
r36689 | return -1; | ||
Jun Wu
|
r36691 | } else { | ||
for (xch = xscr; xch; xch = xche->next) { | ||||
Jun Wu
|
r36842 | xche = xdl_get_hunk(&xch); | ||
Jun Wu
|
r36691 | if (!xch) | ||
break; | ||||
Jun Wu
|
r36838 | if (xecfg->hunk_func(xch->i1 + p, | ||
xche->i1 + xche->chg1 - xch->i1, | ||||
xch->i2 + p, | ||||
xche->i2 + xche->chg2 - xch->i2, | ||||
Jun Wu
|
r36691 | ecb->priv) < 0) | ||
return -1; | ||||
} | ||||
Jun Wu
|
r36689 | } | ||
return 0; | ||||
} | ||||
int xdl_diff(mmfile_t *mf1, mmfile_t *mf2, xpparam_t const *xpp, | ||||
xdemitconf_t const *xecfg, xdemitcb_t *ecb) { | ||||
xdchange_t *xscr; | ||||
xdfenv_t xe; | ||||
if (xdl_do_diff(mf1, mf2, xpp, &xe) < 0) { | ||||
return -1; | ||||
} | ||||
if (xdl_change_compact(&xe.xdf1, &xe.xdf2, xpp->flags) < 0 || | ||||
xdl_change_compact(&xe.xdf2, &xe.xdf1, xpp->flags) < 0 || | ||||
xdl_build_script(&xe, &xscr) < 0) { | ||||
xdl_free_env(&xe); | ||||
return -1; | ||||
} | ||||
Jun Wu
|
r36781 | if (xdl_call_hunk_func(&xe, xscr, ecb, xecfg) < 0) { | ||
Jun Wu
|
r36689 | xdl_free_script(xscr); | ||
Jun Wu
|
r36691 | xdl_free_env(&xe); | ||
return -1; | ||||
Jun Wu
|
r36689 | } | ||
Jun Wu
|
r36691 | xdl_free_script(xscr); | ||
Jun Wu
|
r36689 | xdl_free_env(&xe); | ||
return 0; | ||||
} | ||||