##// END OF EJS Templates
util: reference __main__ in sys.modules as a sysstr
util: reference __main__ in sys.modules as a sysstr

File last commit:

r28437:c3eacee0 default
r31533:28f00d07 default
Show More
setdiscovery.py
249 lines | 8.7 KiB | text/x-python | PythonLexer
Peter Arrenbrecht
discovery: add new set-based discovery...
r14164 # setdiscovery.py - improved discovery of common nodeset for mercurial
#
# Copyright 2010 Benoit Boissinot <bboissin@gmail.com>
# and Peter Arrenbrecht <peter@arrenbrecht.ch>
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.
Olle Lundberg
setdiscovery: document algorithms used...
r20656 """
Algorithm works in the following way. You have two repository: local and
remote. They both contains a DAG of changelists.
The goal of the discovery protocol is to find one set of node *common*,
the set of nodes shared by local and remote.
One of the issue with the original protocol was latency, it could
potentially require lots of roundtrips to discover that the local repo was a
subset of remote (which is a very common case, you usually have few changes
compared to upstream, while upstream probably had lots of development).
The new protocol only requires one interface for the remote repo: `known()`,
which given a set of changelists tells you if they are present in the DAG.
The algorithm then works as follow:
- We will be using three sets, `common`, `missing`, `unknown`. Originally
all nodes are in `unknown`.
- Take a sample from `unknown`, call `remote.known(sample)`
- For each node that remote knows, move it and all its ancestors to `common`
- For each node that remote doesn't know, move it and all its descendants
to `missing`
- Iterate until `unknown` is empty
There are a couple optimizations, first is instead of starting with a random
sample of missing, start by sending all heads, in the case where the local
repo is a subset, you computed the answer in one round trip.
Then you can do something similar to the bisecting strategy used when
finding faulty changesets. Instead of random samples, you can try picking
nodes that will maximize the number of nodes that will be
classified with it (since all ancestors or descendants will be marked as well).
"""
Peter Arrenbrecht
discovery: add new set-based discovery...
r14164
Gregory Szorc
setdiscovery: use absolute_import
r25973 from __future__ import absolute_import
Martin von Zweigbergk
util: drop alias for collections.deque...
r25113 import collections
Augie Fackler
cleanup: move stdlib imports to their own import statement...
r20034 import random
Gregory Szorc
setdiscovery: use absolute_import
r25973
from .i18n import _
from .node import (
nullid,
nullrev,
)
from . import (
dagutil,
Pierre-Yves David
error: get Abort from 'error' instead of 'util'...
r26587 error,
Gregory Szorc
setdiscovery: use absolute_import
r25973 )
Peter Arrenbrecht
discovery: add new set-based discovery...
r14164
Pierre-Yves David
setdiscovery: drop the 'always' argument to '_updatesample'...
r23814 def _updatesample(dag, nodes, sample, quicksamplesize=0):
Pierre-Yves David
setdiscovery: document the '_updatesample' function...
r23809 """update an existing sample to match the expected size
The sample is updated with nodes exponentially distant from each head of the
<nodes> set. (H~1, H~2, H~4, H~8, etc).
If a target size is specified, the sampling will stop once this size is
reached. Otherwise sampling will happen until roots of the <nodes> set are
reached.
:dag: a dag object from dagutil
:nodes: set of nodes we want to discover (if None, assume the whole dag)
:sample: a sample to update
:quicksamplesize: optional target size of the sample"""
Peter Arrenbrecht
discovery: add new set-based discovery...
r14164 # if nodes is empty we scan the entire graph
if nodes:
heads = dag.headsetofconnecteds(nodes)
else:
heads = dag.heads()
dist = {}
Martin von Zweigbergk
util: drop alias for collections.deque...
r25113 visit = collections.deque(heads)
Peter Arrenbrecht
discovery: add new set-based discovery...
r14164 seen = set()
factor = 1
while visit:
curr = visit.popleft()
if curr in seen:
continue
d = dist.setdefault(curr, 1)
if d > factor:
factor *= 2
if d == factor:
Pierre-Yves David
setdiscovery: drop the 'always' argument to '_updatesample'...
r23814 sample.add(curr)
if quicksamplesize and (len(sample) >= quicksamplesize):
return
Peter Arrenbrecht
discovery: add new set-based discovery...
r14164 seen.add(curr)
for p in dag.parents(curr):
if not nodes or p in nodes:
dist.setdefault(p, d + 1)
visit.append(p)
Pierre-Yves David
setdiscovery: drop unused 'initial' argument for '_takequicksample'...
r23806 def _takequicksample(dag, nodes, size):
Pierre-Yves David
setdiscovery: document '_takequicksample'
r23816 """takes a quick sample of size <size>
It is meant for initial sampling and focuses on querying heads and close
ancestors of heads.
:dag: a dag object
:nodes: set of nodes to discover
:size: the maximum size of the sample"""
Pierre-Yves David
setdiscovery: drop '_setupsample' usage in '_takequicksample'...
r23815 sample = dag.headsetofconnecteds(nodes)
if size <= len(sample):
return _limitsample(sample, size)
Pierre-Yves David
setdiscovery: drop the 'always' argument to '_updatesample'...
r23814 _updatesample(dag, None, sample, quicksamplesize=size)
Peter Arrenbrecht
discovery: add new set-based discovery...
r14164 return sample
def _takefullsample(dag, nodes, size):
Pierre-Yves David
setdiscovery: drop the 'always' argument to '_updatesample'...
r23814 sample = dag.headsetofconnecteds(nodes)
Peter Arrenbrecht
discovery: add new set-based discovery...
r14164 # update from heads
Pierre-Yves David
setdiscovery: drop the 'always' argument to '_updatesample'...
r23814 _updatesample(dag, nodes, sample)
Peter Arrenbrecht
discovery: add new set-based discovery...
r14164 # update from roots
Pierre-Yves David
setdiscovery: drop the 'always' argument to '_updatesample'...
r23814 _updatesample(dag.inverse(), nodes, sample)
Peter Arrenbrecht
discovery: add new set-based discovery...
r14164 assert sample
Pierre-Yves David
setdiscovery: randomly pick between heads and sample when taking full sample...
r23810 sample = _limitsample(sample, size)
if len(sample) < size:
more = size - len(sample)
sample.update(random.sample(list(nodes - sample), more))
Peter Arrenbrecht
discovery: add new set-based discovery...
r14164 return sample
Pierre-Yves David
setdiscovery: extract sample limitation in a `_limitsample` function...
r23083 def _limitsample(sample, desiredlen):
"""return a random subset of sample of at most desiredlen item"""
if len(sample) > desiredlen:
sample = set(random.sample(sample, desiredlen))
return sample
Peter Arrenbrecht
discovery: add new set-based discovery...
r14164 def findcommonheads(ui, local, remote,
initialsamplesize=100,
fullsamplesize=200,
abortwhenunrelated=True):
Steven Brown
setdiscovery: limit lines to 80 characters
r14206 '''Return a tuple (common, anyincoming, remoteheads) used to identify
missing nodes from or in remote.
Peter Arrenbrecht
discovery: add new set-based discovery...
r14164 '''
roundtrips = 0
cl = local.changelog
dag = dagutil.revlogdag(cl)
Peter Arrenbrecht
setdiscovery: batch heads and known(ownheads)...
r14624 # early exit if we know all the specified remote heads already
Peter Arrenbrecht
discovery: add new set-based discovery...
r14164 ui.debug("query 1; heads\n")
roundtrips += 1
Peter Arrenbrecht
setdiscovery: batch heads and known(ownheads)...
r14624 ownheads = dag.heads()
Pierre-Yves David
setdiscovery: limit the size of the initial sample (issue4411)...
r23084 sample = _limitsample(ownheads, initialsamplesize)
Mads Kiilerich
discovery: indices between sample and yesno must match (issue4438)...
r23192 # indices between sample and externalized version must match
sample = list(sample)
Augie Fackler
setdiscovery: use iterbatch interface instead of batch...
r28437 batch = remote.iterbatch()
batch.heads()
batch.known(dag.externalizeall(sample))
Augie Fackler
discovery: always use batching now that all peers support batching...
r25914 batch.submit()
Augie Fackler
setdiscovery: use iterbatch interface instead of batch...
r28437 srvheadhashes, yesno = batch.results()
Peter Arrenbrecht
discovery: add new set-based discovery...
r14164
if cl.tip() == nullid:
if srvheadhashes != [nullid]:
return [nullid], True, srvheadhashes
return [nullid], False, []
Steven Brown
setdiscovery: limit lines to 80 characters
r14206 # start actual discovery (we note this before the next "if" for
# compatibility reasons)
Peter Arrenbrecht
discovery: add new set-based discovery...
r14164 ui.status(_("searching for changes\n"))
srvheads = dag.internalizeall(srvheadhashes, filterunknown=True)
if len(srvheads) == len(srvheadhashes):
Matt Mackall
discovery: quiet note about heads...
r14833 ui.debug("all remote heads known locally\n")
Peter Arrenbrecht
discovery: add new set-based discovery...
r14164 return (srvheadhashes, False, srvheadhashes,)
Augie Fackler
cleanup: use __builtins__.all instead of util.all
r25151 if sample and len(ownheads) <= initialsamplesize and all(yesno):
Mads Kiilerich
add missing localization markup
r15497 ui.note(_("all local heads known remotely\n"))
Peter Arrenbrecht
setdiscovery: batch heads and known(ownheads)...
r14624 ownheadhashes = dag.externalizeall(ownheads)
return (ownheadhashes, True, srvheadhashes,)
Peter Arrenbrecht
discovery: add new set-based discovery...
r14164 # full blown discovery
Brodie Rao
cleanup: eradicate long lines
r16683 # own nodes I know we both know
Siddharth Agarwal
setdiscovery: avoid a full changelog graph traversal...
r23343 # treat remote heads (and maybe own heads) as a first implicit sample
# response
common = cl.incrementalmissingrevs(srvheads)
commoninsample = set(n for i, n in enumerate(sample) if yesno[i])
common.addbases(commoninsample)
Pierre-Yves David
setdiscovery: drop shadowed 'undecided' assignment...
r23746 # own nodes where I don't know if remote knows them
Siddharth Agarwal
setdiscovery: avoid a full changelog graph traversal...
r23343 undecided = set(common.missingancestors(ownheads))
Brodie Rao
cleanup: eradicate long lines
r16683 # own nodes I know remote lacks
missing = set()
Peter Arrenbrecht
setdiscovery: batch heads and known(ownheads)...
r14624 full = False
while undecided:
Peter Arrenbrecht
discovery: add new set-based discovery...
r14164
Peter Arrenbrecht
setdiscovery: batch heads and known(ownheads)...
r14624 if sample:
missinginsample = [n for i, n in enumerate(sample) if not yesno[i]]
missing.update(dag.descendantset(missinginsample, missing))
Peter Arrenbrecht
discovery: add new set-based discovery...
r14164
Peter Arrenbrecht
setdiscovery: batch heads and known(ownheads)...
r14624 undecided.difference_update(missing)
Peter Arrenbrecht
discovery: add new set-based discovery...
r14164
if not undecided:
break
Pierre-Yves David
setdiscovery: factorize similar sampling code...
r23747 if full or common.hasbases():
if full:
ui.note(_("sampling from both directions\n"))
else:
ui.debug("taking initial sample\n")
Pierre-Yves David
setdiscovery: delay sample building calls to gather them in a single place...
r23807 samplefunc = _takefullsample
Pierre-Yves David
setdiscovery: limit the size of all sample (issue4411)...
r23130 targetsize = fullsamplesize
Peter Arrenbrecht
setdiscovery: batch heads and known(ownheads)...
r14624 else:
# use even cheaper initial sample
ui.debug("taking quick initial sample\n")
Pierre-Yves David
setdiscovery: delay sample building calls to gather them in a single place...
r23807 samplefunc = _takequicksample
Pierre-Yves David
setdiscovery: limit the size of all sample (issue4411)...
r23130 targetsize = initialsamplesize
Pierre-Yves David
setdiscovery: avoid calling any sample building if the undecided set is small...
r23808 if len(undecided) < targetsize:
sample = list(undecided)
else:
sample = samplefunc(dag, undecided, targetsize)
sample = _limitsample(sample, targetsize)
Peter Arrenbrecht
discovery: add new set-based discovery...
r14164
roundtrips += 1
ui.progress(_('searching'), roundtrips, unit=_('queries'))
ui.debug("query %i; still undecided: %i, sample size is: %i\n"
% (roundtrips, len(undecided), len(sample)))
# indices between sample and externalized version must match
sample = list(sample)
yesno = remote.known(dag.externalizeall(sample))
Peter Arrenbrecht
setdiscovery: batch heads and known(ownheads)...
r14624 full = True
Peter Arrenbrecht
discovery: add new set-based discovery...
r14164
Siddharth Agarwal
setdiscovery: avoid a full changelog graph traversal...
r23343 if sample:
commoninsample = set(n for i, n in enumerate(sample) if yesno[i])
common.addbases(commoninsample)
common.removeancestorsfrom(undecided)
# heads(common) == heads(common.bases) since common represents common.bases
# and all its ancestors
result = dag.headsetofconnecteds(common.bases)
# common.bases can include nullrev, but our contract requires us to not
# return any heads in that case, so discard that
result.discard(nullrev)
Peter Arrenbrecht
discovery: add new set-based discovery...
r14164 ui.progress(_('searching'), None)
ui.debug("%d total queries\n" % roundtrips)
if not result and srvheadhashes != [nullid]:
if abortwhenunrelated:
Pierre-Yves David
error: get Abort from 'error' instead of 'util'...
r26587 raise error.Abort(_("repository is unrelated"))
Peter Arrenbrecht
discovery: add new set-based discovery...
r14164 else:
ui.warn(_("warning: repository is unrelated\n"))
return (set([nullid]), True, srvheadhashes,)
Andrew Pritchard
setdiscovery: return anyincoming=False when remote's only head is nullid...
r14981 anyincoming = (srvheadhashes != [nullid])
return dag.externalizeall(result), anyincoming, srvheadhashes