##// END OF EJS Templates
tests: add test demonstrating phase loss when cloning (issue5939)...
tests: add test demonstrating phase loss when cloning (issue5939) The added tests demonstrate that phases exchange when using the listkeys based phases exchange fails to preserve public phase in a certain scenario when a merge is a phase root. Both non-bundle2 and bundle2 prior to the binary phase data part are buggy. Differential Revision: https://phab.mercurial-scm.org/D3932

File last commit:

r37513:b1fb341d default
r38699:2a227782 @80 default
Show More
mem.h
362 lines | 11.1 KiB | text/x-c | CLexer
Gregory Szorc
zstandard: vendor python-zstandard 0.9.0...
r37513 /*
Gregory Szorc
zstd: vendor zstd 1.1.1...
r30434 * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
* All rights reserved.
*
Gregory Szorc
zstandard: vendor python-zstandard 0.9.0...
r37513 * This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
Gregory Szorc
zstd: vendor zstd 1.1.1...
r30434 */
#ifndef MEM_H_MODULE
#define MEM_H_MODULE
#if defined (__cplusplus)
extern "C" {
#endif
/*-****************************************
* Dependencies
******************************************/
#include <stddef.h> /* size_t, ptrdiff_t */
#include <string.h> /* memcpy */
/*-****************************************
* Compiler specifics
******************************************/
#if defined(_MSC_VER) /* Visual Studio */
# include <stdlib.h> /* _byteswap_ulong */
# include <intrin.h> /* _byteswap_* */
#endif
#if defined(__GNUC__)
# define MEM_STATIC static __inline __attribute__((unused))
#elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
# define MEM_STATIC static inline
#elif defined(_MSC_VER)
# define MEM_STATIC static __inline
#else
# define MEM_STATIC static /* this version may generate warnings for unused static functions; disable the relevant warning */
#endif
/* code only tested on 32 and 64 bits systems */
Gregory Szorc
zstd: vendor python-zstandard 0.7.0...
r30895 #define MEM_STATIC_ASSERT(c) { enum { MEM_static_assert = 1/(int)(!!(c)) }; }
Gregory Szorc
zstd: vendor zstd 1.1.1...
r30434 MEM_STATIC void MEM_check(void) { MEM_STATIC_ASSERT((sizeof(size_t)==4) || (sizeof(size_t)==8)); }
/*-**************************************************************
* Basic Types
*****************************************************************/
#if !defined (__VMS) && (defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
# include <stdint.h>
Gregory Szorc
zstandard: vendor python-zstandard 0.9.0...
r37513 typedef uint8_t BYTE;
typedef uint16_t U16;
typedef int16_t S16;
typedef uint32_t U32;
typedef int32_t S32;
typedef uint64_t U64;
typedef int64_t S64;
Gregory Szorc
zstd: vendor zstd 1.1.1...
r30434 #else
Gregory Szorc
zstd: vendor python-zstandard 0.6.0...
r30822 typedef unsigned char BYTE;
Gregory Szorc
zstd: vendor zstd 1.1.1...
r30434 typedef unsigned short U16;
typedef signed short S16;
typedef unsigned int U32;
typedef signed int S32;
typedef unsigned long long U64;
typedef signed long long S64;
#endif
/*-**************************************************************
* Memory I/O
*****************************************************************/
/* MEM_FORCE_MEMORY_ACCESS :
* By default, access to unaligned memory is controlled by `memcpy()`, which is safe and portable.
* Unfortunately, on some target/compiler combinations, the generated assembly is sub-optimal.
* The below switch allow to select different access method for improved performance.
* Method 0 (default) : use `memcpy()`. Safe and portable.
Gregory Szorc
zstandard: vendor python-zstandard 0.9.0...
r37513 * Method 1 : `__packed` statement. It depends on compiler extension (i.e., not portable).
Gregory Szorc
zstd: vendor zstd 1.1.1...
r30434 * This method is safe if your compiler supports it, and *generally* as fast or faster than `memcpy`.
* Method 2 : direct access. This method is portable but violate C standard.
* It can generate buggy code on targets depending on alignment.
Gregory Szorc
zstandard: vendor python-zstandard 0.9.0...
r37513 * In some circumstances, it's the only known way to get the most performance (i.e. GCC + ARMv6)
Gregory Szorc
zstd: vendor zstd 1.1.1...
r30434 * See http://fastcompression.blogspot.fr/2015/08/accessing-unaligned-memory.html for details.
* Prefer these methods in priority order (0 > 1 > 2)
*/
#ifndef MEM_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */
# if defined(__GNUC__) && ( defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) )
# define MEM_FORCE_MEMORY_ACCESS 2
Gregory Szorc
zstandard: vendor python-zstandard 0.9.0...
r37513 # elif defined(__INTEL_COMPILER) || defined(__GNUC__)
Gregory Szorc
zstd: vendor zstd 1.1.1...
r30434 # define MEM_FORCE_MEMORY_ACCESS 1
# endif
#endif
MEM_STATIC unsigned MEM_32bits(void) { return sizeof(size_t)==4; }
MEM_STATIC unsigned MEM_64bits(void) { return sizeof(size_t)==8; }
MEM_STATIC unsigned MEM_isLittleEndian(void)
{
const union { U32 u; BYTE c[4]; } one = { 1 }; /* don't use static : performance detrimental */
return one.c[0];
}
#if defined(MEM_FORCE_MEMORY_ACCESS) && (MEM_FORCE_MEMORY_ACCESS==2)
/* violates C standard, by lying on structure alignment.
Only use if no other choice to achieve best performance on target platform */
MEM_STATIC U16 MEM_read16(const void* memPtr) { return *(const U16*) memPtr; }
MEM_STATIC U32 MEM_read32(const void* memPtr) { return *(const U32*) memPtr; }
MEM_STATIC U64 MEM_read64(const void* memPtr) { return *(const U64*) memPtr; }
Gregory Szorc
zstandard: vendor python-zstandard 0.9.0...
r37513 MEM_STATIC size_t MEM_readST(const void* memPtr) { return *(const size_t*) memPtr; }
Gregory Szorc
zstd: vendor zstd 1.1.1...
r30434
MEM_STATIC void MEM_write16(void* memPtr, U16 value) { *(U16*)memPtr = value; }
MEM_STATIC void MEM_write32(void* memPtr, U32 value) { *(U32*)memPtr = value; }
MEM_STATIC void MEM_write64(void* memPtr, U64 value) { *(U64*)memPtr = value; }
#elif defined(MEM_FORCE_MEMORY_ACCESS) && (MEM_FORCE_MEMORY_ACCESS==1)
/* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */
/* currently only defined for gcc and icc */
#if defined(_MSC_VER) || (defined(__INTEL_COMPILER) && defined(WIN32))
Gregory Szorc
zstandard: vendor python-zstandard 0.9.0...
r37513 __pragma( pack(push, 1) )
typedef struct { U16 v; } unalign16;
typedef struct { U32 v; } unalign32;
typedef struct { U64 v; } unalign64;
typedef struct { size_t v; } unalignArch;
Gregory Szorc
zstd: vendor zstd 1.1.1...
r30434 __pragma( pack(pop) )
#else
Gregory Szorc
zstandard: vendor python-zstandard 0.9.0...
r37513 typedef struct { U16 v; } __attribute__((packed)) unalign16;
typedef struct { U32 v; } __attribute__((packed)) unalign32;
typedef struct { U64 v; } __attribute__((packed)) unalign64;
typedef struct { size_t v; } __attribute__((packed)) unalignArch;
Gregory Szorc
zstd: vendor zstd 1.1.1...
r30434 #endif
Gregory Szorc
zstandard: vendor python-zstandard 0.9.0...
r37513 MEM_STATIC U16 MEM_read16(const void* ptr) { return ((const unalign16*)ptr)->v; }
MEM_STATIC U32 MEM_read32(const void* ptr) { return ((const unalign32*)ptr)->v; }
MEM_STATIC U64 MEM_read64(const void* ptr) { return ((const unalign64*)ptr)->v; }
MEM_STATIC size_t MEM_readST(const void* ptr) { return ((const unalignArch*)ptr)->v; }
Gregory Szorc
zstd: vendor zstd 1.1.1...
r30434
Gregory Szorc
zstandard: vendor python-zstandard 0.9.0...
r37513 MEM_STATIC void MEM_write16(void* memPtr, U16 value) { ((unalign16*)memPtr)->v = value; }
MEM_STATIC void MEM_write32(void* memPtr, U32 value) { ((unalign32*)memPtr)->v = value; }
MEM_STATIC void MEM_write64(void* memPtr, U64 value) { ((unalign64*)memPtr)->v = value; }
Gregory Szorc
zstd: vendor zstd 1.1.1...
r30434
#else
/* default method, safe and standard.
can sometimes prove slower */
MEM_STATIC U16 MEM_read16(const void* memPtr)
{
U16 val; memcpy(&val, memPtr, sizeof(val)); return val;
}
MEM_STATIC U32 MEM_read32(const void* memPtr)
{
U32 val; memcpy(&val, memPtr, sizeof(val)); return val;
}
MEM_STATIC U64 MEM_read64(const void* memPtr)
{
U64 val; memcpy(&val, memPtr, sizeof(val)); return val;
}
MEM_STATIC size_t MEM_readST(const void* memPtr)
{
size_t val; memcpy(&val, memPtr, sizeof(val)); return val;
}
MEM_STATIC void MEM_write16(void* memPtr, U16 value)
{
memcpy(memPtr, &value, sizeof(value));
}
MEM_STATIC void MEM_write32(void* memPtr, U32 value)
{
memcpy(memPtr, &value, sizeof(value));
}
MEM_STATIC void MEM_write64(void* memPtr, U64 value)
{
memcpy(memPtr, &value, sizeof(value));
}
#endif /* MEM_FORCE_MEMORY_ACCESS */
MEM_STATIC U32 MEM_swap32(U32 in)
{
#if defined(_MSC_VER) /* Visual Studio */
return _byteswap_ulong(in);
Gregory Szorc
zstandard: vendor python-zstandard 0.9.0...
r37513 #elif defined (__GNUC__) && (__GNUC__ * 100 + __GNUC_MINOR__ >= 403)
Gregory Szorc
zstd: vendor zstd 1.1.1...
r30434 return __builtin_bswap32(in);
#else
return ((in << 24) & 0xff000000 ) |
((in << 8) & 0x00ff0000 ) |
((in >> 8) & 0x0000ff00 ) |
((in >> 24) & 0x000000ff );
#endif
}
MEM_STATIC U64 MEM_swap64(U64 in)
{
#if defined(_MSC_VER) /* Visual Studio */
return _byteswap_uint64(in);
Gregory Szorc
zstandard: vendor python-zstandard 0.9.0...
r37513 #elif defined (__GNUC__) && (__GNUC__ * 100 + __GNUC_MINOR__ >= 403)
Gregory Szorc
zstd: vendor zstd 1.1.1...
r30434 return __builtin_bswap64(in);
#else
return ((in << 56) & 0xff00000000000000ULL) |
((in << 40) & 0x00ff000000000000ULL) |
((in << 24) & 0x0000ff0000000000ULL) |
((in << 8) & 0x000000ff00000000ULL) |
((in >> 8) & 0x00000000ff000000ULL) |
((in >> 24) & 0x0000000000ff0000ULL) |
((in >> 40) & 0x000000000000ff00ULL) |
((in >> 56) & 0x00000000000000ffULL);
#endif
}
MEM_STATIC size_t MEM_swapST(size_t in)
{
if (MEM_32bits())
return (size_t)MEM_swap32((U32)in);
else
return (size_t)MEM_swap64((U64)in);
}
/*=== Little endian r/w ===*/
MEM_STATIC U16 MEM_readLE16(const void* memPtr)
{
if (MEM_isLittleEndian())
return MEM_read16(memPtr);
else {
const BYTE* p = (const BYTE*)memPtr;
return (U16)(p[0] + (p[1]<<8));
}
}
MEM_STATIC void MEM_writeLE16(void* memPtr, U16 val)
{
if (MEM_isLittleEndian()) {
MEM_write16(memPtr, val);
} else {
BYTE* p = (BYTE*)memPtr;
p[0] = (BYTE)val;
p[1] = (BYTE)(val>>8);
}
}
MEM_STATIC U32 MEM_readLE24(const void* memPtr)
{
return MEM_readLE16(memPtr) + (((const BYTE*)memPtr)[2] << 16);
}
MEM_STATIC void MEM_writeLE24(void* memPtr, U32 val)
{
MEM_writeLE16(memPtr, (U16)val);
((BYTE*)memPtr)[2] = (BYTE)(val>>16);
}
MEM_STATIC U32 MEM_readLE32(const void* memPtr)
{
if (MEM_isLittleEndian())
return MEM_read32(memPtr);
else
return MEM_swap32(MEM_read32(memPtr));
}
MEM_STATIC void MEM_writeLE32(void* memPtr, U32 val32)
{
if (MEM_isLittleEndian())
MEM_write32(memPtr, val32);
else
MEM_write32(memPtr, MEM_swap32(val32));
}
MEM_STATIC U64 MEM_readLE64(const void* memPtr)
{
if (MEM_isLittleEndian())
return MEM_read64(memPtr);
else
return MEM_swap64(MEM_read64(memPtr));
}
MEM_STATIC void MEM_writeLE64(void* memPtr, U64 val64)
{
if (MEM_isLittleEndian())
MEM_write64(memPtr, val64);
else
MEM_write64(memPtr, MEM_swap64(val64));
}
MEM_STATIC size_t MEM_readLEST(const void* memPtr)
{
if (MEM_32bits())
return (size_t)MEM_readLE32(memPtr);
else
return (size_t)MEM_readLE64(memPtr);
}
MEM_STATIC void MEM_writeLEST(void* memPtr, size_t val)
{
if (MEM_32bits())
MEM_writeLE32(memPtr, (U32)val);
else
MEM_writeLE64(memPtr, (U64)val);
}
/*=== Big endian r/w ===*/
MEM_STATIC U32 MEM_readBE32(const void* memPtr)
{
if (MEM_isLittleEndian())
return MEM_swap32(MEM_read32(memPtr));
else
return MEM_read32(memPtr);
}
MEM_STATIC void MEM_writeBE32(void* memPtr, U32 val32)
{
if (MEM_isLittleEndian())
MEM_write32(memPtr, MEM_swap32(val32));
else
MEM_write32(memPtr, val32);
}
MEM_STATIC U64 MEM_readBE64(const void* memPtr)
{
if (MEM_isLittleEndian())
return MEM_swap64(MEM_read64(memPtr));
else
return MEM_read64(memPtr);
}
MEM_STATIC void MEM_writeBE64(void* memPtr, U64 val64)
{
if (MEM_isLittleEndian())
MEM_write64(memPtr, MEM_swap64(val64));
else
MEM_write64(memPtr, val64);
}
MEM_STATIC size_t MEM_readBEST(const void* memPtr)
{
if (MEM_32bits())
return (size_t)MEM_readBE32(memPtr);
else
return (size_t)MEM_readBE64(memPtr);
}
MEM_STATIC void MEM_writeBEST(void* memPtr, size_t val)
{
if (MEM_32bits())
MEM_writeBE32(memPtr, (U32)val);
else
MEM_writeBE64(memPtr, (U64)val);
}
#if defined (__cplusplus)
}
#endif
#endif /* MEM_H_MODULE */