fse.h
708 lines
| 32.2 KiB
| text/x-c
|
CLexer
Gregory Szorc
|
r30434 | /* ****************************************************************** | ||
FSE : Finite State Entropy codec | ||||
Public Prototypes declaration | ||||
Copyright (C) 2013-2016, Yann Collet. | ||||
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php) | ||||
Redistribution and use in source and binary forms, with or without | ||||
modification, are permitted provided that the following conditions are | ||||
met: | ||||
* Redistributions of source code must retain the above copyright | ||||
notice, this list of conditions and the following disclaimer. | ||||
* Redistributions in binary form must reproduce the above | ||||
copyright notice, this list of conditions and the following disclaimer | ||||
in the documentation and/or other materials provided with the | ||||
distribution. | ||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | ||||
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | ||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | ||||
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | ||||
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||||
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | ||||
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | ||||
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | ||||
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | ||||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | ||||
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | ||||
You can contact the author at : | ||||
- Source repository : https://github.com/Cyan4973/FiniteStateEntropy | ||||
****************************************************************** */ | ||||
#if defined (__cplusplus) | ||||
extern "C" { | ||||
#endif | ||||
Gregory Szorc
|
r37513 | #ifndef FSE_H | ||
#define FSE_H | ||||
Gregory Szorc
|
r30434 | |||
/*-***************************************** | ||||
* Dependencies | ||||
******************************************/ | ||||
#include <stddef.h> /* size_t, ptrdiff_t */ | ||||
Gregory Szorc
|
r37513 | /*-***************************************** | ||
* FSE_PUBLIC_API : control library symbols visibility | ||||
******************************************/ | ||||
#if defined(FSE_DLL_EXPORT) && (FSE_DLL_EXPORT==1) && defined(__GNUC__) && (__GNUC__ >= 4) | ||||
# define FSE_PUBLIC_API __attribute__ ((visibility ("default"))) | ||||
#elif defined(FSE_DLL_EXPORT) && (FSE_DLL_EXPORT==1) /* Visual expected */ | ||||
# define FSE_PUBLIC_API __declspec(dllexport) | ||||
#elif defined(FSE_DLL_IMPORT) && (FSE_DLL_IMPORT==1) | ||||
# define FSE_PUBLIC_API __declspec(dllimport) /* It isn't required but allows to generate better code, saving a function pointer load from the IAT and an indirect jump.*/ | ||||
#else | ||||
# define FSE_PUBLIC_API | ||||
#endif | ||||
/*------ Version ------*/ | ||||
#define FSE_VERSION_MAJOR 0 | ||||
#define FSE_VERSION_MINOR 9 | ||||
#define FSE_VERSION_RELEASE 0 | ||||
#define FSE_LIB_VERSION FSE_VERSION_MAJOR.FSE_VERSION_MINOR.FSE_VERSION_RELEASE | ||||
#define FSE_QUOTE(str) #str | ||||
#define FSE_EXPAND_AND_QUOTE(str) FSE_QUOTE(str) | ||||
#define FSE_VERSION_STRING FSE_EXPAND_AND_QUOTE(FSE_LIB_VERSION) | ||||
#define FSE_VERSION_NUMBER (FSE_VERSION_MAJOR *100*100 + FSE_VERSION_MINOR *100 + FSE_VERSION_RELEASE) | ||||
FSE_PUBLIC_API unsigned FSE_versionNumber(void); /**< library version number; to be used when checking dll version */ | ||||
Gregory Szorc
|
r40157 | |||
Gregory Szorc
|
r30434 | /*-**************************************** | ||
* FSE simple functions | ||||
******************************************/ | ||||
/*! FSE_compress() : | ||||
Compress content of buffer 'src', of size 'srcSize', into destination buffer 'dst'. | ||||
'dst' buffer must be already allocated. Compression runs faster is dstCapacity >= FSE_compressBound(srcSize). | ||||
@return : size of compressed data (<= dstCapacity). | ||||
Special values : if return == 0, srcData is not compressible => Nothing is stored within dst !!! | ||||
if return == 1, srcData is a single byte symbol * srcSize times. Use RLE compression instead. | ||||
if FSE_isError(return), compression failed (more details using FSE_getErrorName()) | ||||
*/ | ||||
Gregory Szorc
|
r37513 | FSE_PUBLIC_API size_t FSE_compress(void* dst, size_t dstCapacity, | ||
const void* src, size_t srcSize); | ||||
Gregory Szorc
|
r30434 | |||
/*! FSE_decompress(): | ||||
Decompress FSE data from buffer 'cSrc', of size 'cSrcSize', | ||||
into already allocated destination buffer 'dst', of size 'dstCapacity'. | ||||
@return : size of regenerated data (<= maxDstSize), | ||||
or an error code, which can be tested using FSE_isError() . | ||||
** Important ** : FSE_decompress() does not decompress non-compressible nor RLE data !!! | ||||
Why ? : making this distinction requires a header. | ||||
Header management is intentionally delegated to the user layer, which can better manage special cases. | ||||
*/ | ||||
Gregory Szorc
|
r37513 | FSE_PUBLIC_API size_t FSE_decompress(void* dst, size_t dstCapacity, | ||
const void* cSrc, size_t cSrcSize); | ||||
Gregory Szorc
|
r30434 | |||
/*-***************************************** | ||||
* Tool functions | ||||
******************************************/ | ||||
Gregory Szorc
|
r37513 | FSE_PUBLIC_API size_t FSE_compressBound(size_t size); /* maximum compressed size */ | ||
Gregory Szorc
|
r30434 | |||
/* Error Management */ | ||||
Gregory Szorc
|
r37513 | FSE_PUBLIC_API unsigned FSE_isError(size_t code); /* tells if a return value is an error code */ | ||
FSE_PUBLIC_API const char* FSE_getErrorName(size_t code); /* provides error code string (useful for debugging) */ | ||||
Gregory Szorc
|
r30434 | |||
/*-***************************************** | ||||
* FSE advanced functions | ||||
******************************************/ | ||||
/*! FSE_compress2() : | ||||
Same as FSE_compress(), but allows the selection of 'maxSymbolValue' and 'tableLog' | ||||
Both parameters can be defined as '0' to mean : use default value | ||||
@return : size of compressed data | ||||
Special values : if return == 0, srcData is not compressible => Nothing is stored within cSrc !!! | ||||
if return == 1, srcData is a single byte symbol * srcSize times. Use RLE compression. | ||||
if FSE_isError(return), it's an error code. | ||||
*/ | ||||
Gregory Szorc
|
r37513 | FSE_PUBLIC_API size_t FSE_compress2 (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog); | ||
Gregory Szorc
|
r30434 | |||
/*-***************************************** | ||||
* FSE detailed API | ||||
******************************************/ | ||||
/*! | ||||
FSE_compress() does the following: | ||||
Gregory Szorc
|
r40157 | 1. count symbol occurrence from source[] into table count[] (see hist.h) | ||
Gregory Szorc
|
r30434 | 2. normalize counters so that sum(count[]) == Power_of_2 (2^tableLog) | ||
3. save normalized counters to memory buffer using writeNCount() | ||||
4. build encoding table 'CTable' from normalized counters | ||||
5. encode the data stream using encoding table 'CTable' | ||||
FSE_decompress() does the following: | ||||
1. read normalized counters with readNCount() | ||||
2. build decoding table 'DTable' from normalized counters | ||||
3. decode the data stream using decoding table 'DTable' | ||||
The following API allows targeting specific sub-functions for advanced tasks. | ||||
For example, it's possible to compress several blocks using the same 'CTable', | ||||
or to save and provide normalized distribution using external method. | ||||
*/ | ||||
/* *** COMPRESSION *** */ | ||||
/*! FSE_optimalTableLog(): | ||||
dynamically downsize 'tableLog' when conditions are met. | ||||
It saves CPU time, by using smaller tables, while preserving or even improving compression ratio. | ||||
@return : recommended tableLog (necessarily <= 'maxTableLog') */ | ||||
Gregory Szorc
|
r37513 | FSE_PUBLIC_API unsigned FSE_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue); | ||
Gregory Szorc
|
r30434 | |||
/*! FSE_normalizeCount(): | ||||
normalize counts so that sum(count[]) == Power_of_2 (2^tableLog) | ||||
'normalizedCounter' is a table of short, of minimum size (maxSymbolValue+1). | ||||
@return : tableLog, | ||||
or an errorCode, which can be tested using FSE_isError() */ | ||||
Gregory Szorc
|
r40157 | FSE_PUBLIC_API size_t FSE_normalizeCount(short* normalizedCounter, unsigned tableLog, | ||
const unsigned* count, size_t srcSize, unsigned maxSymbolValue); | ||||
Gregory Szorc
|
r30434 | |||
/*! FSE_NCountWriteBound(): | ||||
Provides the maximum possible size of an FSE normalized table, given 'maxSymbolValue' and 'tableLog'. | ||||
Typically useful for allocation purpose. */ | ||||
Gregory Szorc
|
r37513 | FSE_PUBLIC_API size_t FSE_NCountWriteBound(unsigned maxSymbolValue, unsigned tableLog); | ||
Gregory Szorc
|
r30434 | |||
/*! FSE_writeNCount(): | ||||
Compactly save 'normalizedCounter' into 'buffer'. | ||||
@return : size of the compressed table, | ||||
or an errorCode, which can be tested using FSE_isError(). */ | ||||
Gregory Szorc
|
r40157 | FSE_PUBLIC_API size_t FSE_writeNCount (void* buffer, size_t bufferSize, | ||
const short* normalizedCounter, | ||||
unsigned maxSymbolValue, unsigned tableLog); | ||||
Gregory Szorc
|
r30434 | |||
/*! Constructor and Destructor of FSE_CTable. | ||||
Note that FSE_CTable size depends on 'tableLog' and 'maxSymbolValue' */ | ||||
typedef unsigned FSE_CTable; /* don't allocate that. It's only meant to be more restrictive than void* */ | ||||
Gregory Szorc
|
r37513 | FSE_PUBLIC_API FSE_CTable* FSE_createCTable (unsigned maxSymbolValue, unsigned tableLog); | ||
FSE_PUBLIC_API void FSE_freeCTable (FSE_CTable* ct); | ||||
Gregory Szorc
|
r30434 | |||
/*! FSE_buildCTable(): | ||||
Builds `ct`, which must be already allocated, using FSE_createCTable(). | ||||
@return : 0, or an errorCode, which can be tested using FSE_isError() */ | ||||
Gregory Szorc
|
r37513 | FSE_PUBLIC_API size_t FSE_buildCTable(FSE_CTable* ct, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog); | ||
Gregory Szorc
|
r30434 | |||
/*! FSE_compress_usingCTable(): | ||||
Compress `src` using `ct` into `dst` which must be already allocated. | ||||
@return : size of compressed data (<= `dstCapacity`), | ||||
or 0 if compressed data could not fit into `dst`, | ||||
or an errorCode, which can be tested using FSE_isError() */ | ||||
Gregory Szorc
|
r37513 | FSE_PUBLIC_API size_t FSE_compress_usingCTable (void* dst, size_t dstCapacity, const void* src, size_t srcSize, const FSE_CTable* ct); | ||
Gregory Szorc
|
r30434 | |||
/*! | ||||
Tutorial : | ||||
---------- | ||||
The first step is to count all symbols. FSE_count() does this job very fast. | ||||
Result will be saved into 'count', a table of unsigned int, which must be already allocated, and have 'maxSymbolValuePtr[0]+1' cells. | ||||
'src' is a table of bytes of size 'srcSize'. All values within 'src' MUST be <= maxSymbolValuePtr[0] | ||||
maxSymbolValuePtr[0] will be updated, with its real value (necessarily <= original value) | ||||
FSE_count() will return the number of occurrence of the most frequent symbol. | ||||
This can be used to know if there is a single symbol within 'src', and to quickly evaluate its compressibility. | ||||
If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError()). | ||||
The next step is to normalize the frequencies. | ||||
FSE_normalizeCount() will ensure that sum of frequencies is == 2 ^'tableLog'. | ||||
It also guarantees a minimum of 1 to any Symbol with frequency >= 1. | ||||
You can use 'tableLog'==0 to mean "use default tableLog value". | ||||
If you are unsure of which tableLog value to use, you can ask FSE_optimalTableLog(), | ||||
which will provide the optimal valid tableLog given sourceSize, maxSymbolValue, and a user-defined maximum (0 means "default"). | ||||
The result of FSE_normalizeCount() will be saved into a table, | ||||
called 'normalizedCounter', which is a table of signed short. | ||||
'normalizedCounter' must be already allocated, and have at least 'maxSymbolValue+1' cells. | ||||
The return value is tableLog if everything proceeded as expected. | ||||
It is 0 if there is a single symbol within distribution. | ||||
If there is an error (ex: invalid tableLog value), the function will return an ErrorCode (which can be tested using FSE_isError()). | ||||
'normalizedCounter' can be saved in a compact manner to a memory area using FSE_writeNCount(). | ||||
'buffer' must be already allocated. | ||||
For guaranteed success, buffer size must be at least FSE_headerBound(). | ||||
The result of the function is the number of bytes written into 'buffer'. | ||||
If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError(); ex : buffer size too small). | ||||
'normalizedCounter' can then be used to create the compression table 'CTable'. | ||||
The space required by 'CTable' must be already allocated, using FSE_createCTable(). | ||||
You can then use FSE_buildCTable() to fill 'CTable'. | ||||
If there is an error, both functions will return an ErrorCode (which can be tested using FSE_isError()). | ||||
'CTable' can then be used to compress 'src', with FSE_compress_usingCTable(). | ||||
Similar to FSE_count(), the convention is that 'src' is assumed to be a table of char of size 'srcSize' | ||||
The function returns the size of compressed data (without header), necessarily <= `dstCapacity`. | ||||
If it returns '0', compressed data could not fit into 'dst'. | ||||
If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError()). | ||||
*/ | ||||
/* *** DECOMPRESSION *** */ | ||||
/*! FSE_readNCount(): | ||||
Read compactly saved 'normalizedCounter' from 'rBuffer'. | ||||
@return : size read from 'rBuffer', | ||||
or an errorCode, which can be tested using FSE_isError(). | ||||
maxSymbolValuePtr[0] and tableLogPtr[0] will also be updated with their respective values */ | ||||
Gregory Szorc
|
r40157 | FSE_PUBLIC_API size_t FSE_readNCount (short* normalizedCounter, | ||
unsigned* maxSymbolValuePtr, unsigned* tableLogPtr, | ||||
const void* rBuffer, size_t rBuffSize); | ||||
Gregory Szorc
|
r30434 | |||
/*! Constructor and Destructor of FSE_DTable. | ||||
Note that its size depends on 'tableLog' */ | ||||
typedef unsigned FSE_DTable; /* don't allocate that. It's just a way to be more restrictive than void* */ | ||||
Gregory Szorc
|
r37513 | FSE_PUBLIC_API FSE_DTable* FSE_createDTable(unsigned tableLog); | ||
FSE_PUBLIC_API void FSE_freeDTable(FSE_DTable* dt); | ||||
Gregory Szorc
|
r30434 | |||
/*! FSE_buildDTable(): | ||||
Builds 'dt', which must be already allocated, using FSE_createDTable(). | ||||
return : 0, or an errorCode, which can be tested using FSE_isError() */ | ||||
Gregory Szorc
|
r37513 | FSE_PUBLIC_API size_t FSE_buildDTable (FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog); | ||
Gregory Szorc
|
r30434 | |||
/*! FSE_decompress_usingDTable(): | ||||
Decompress compressed source `cSrc` of size `cSrcSize` using `dt` | ||||
into `dst` which must be already allocated. | ||||
@return : size of regenerated data (necessarily <= `dstCapacity`), | ||||
or an errorCode, which can be tested using FSE_isError() */ | ||||
Gregory Szorc
|
r37513 | FSE_PUBLIC_API size_t FSE_decompress_usingDTable(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, const FSE_DTable* dt); | ||
Gregory Szorc
|
r30434 | |||
/*! | ||||
Tutorial : | ||||
---------- | ||||
(Note : these functions only decompress FSE-compressed blocks. | ||||
If block is uncompressed, use memcpy() instead | ||||
If block is a single repeated byte, use memset() instead ) | ||||
The first step is to obtain the normalized frequencies of symbols. | ||||
This can be performed by FSE_readNCount() if it was saved using FSE_writeNCount(). | ||||
'normalizedCounter' must be already allocated, and have at least 'maxSymbolValuePtr[0]+1' cells of signed short. | ||||
In practice, that means it's necessary to know 'maxSymbolValue' beforehand, | ||||
or size the table to handle worst case situations (typically 256). | ||||
FSE_readNCount() will provide 'tableLog' and 'maxSymbolValue'. | ||||
The result of FSE_readNCount() is the number of bytes read from 'rBuffer'. | ||||
Note that 'rBufferSize' must be at least 4 bytes, even if useful information is less than that. | ||||
If there is an error, the function will return an error code, which can be tested using FSE_isError(). | ||||
The next step is to build the decompression tables 'FSE_DTable' from 'normalizedCounter'. | ||||
This is performed by the function FSE_buildDTable(). | ||||
The space required by 'FSE_DTable' must be already allocated using FSE_createDTable(). | ||||
If there is an error, the function will return an error code, which can be tested using FSE_isError(). | ||||
`FSE_DTable` can then be used to decompress `cSrc`, with FSE_decompress_usingDTable(). | ||||
`cSrcSize` must be strictly correct, otherwise decompression will fail. | ||||
FSE_decompress_usingDTable() result will tell how many bytes were regenerated (<=`dstCapacity`). | ||||
If there is an error, the function will return an error code, which can be tested using FSE_isError(). (ex: dst buffer too small) | ||||
*/ | ||||
Gregory Szorc
|
r37513 | #endif /* FSE_H */ | ||
Gregory Szorc
|
r30434 | |||
Gregory Szorc
|
r37513 | #if defined(FSE_STATIC_LINKING_ONLY) && !defined(FSE_H_FSE_STATIC_LINKING_ONLY) | ||
#define FSE_H_FSE_STATIC_LINKING_ONLY | ||||
Gregory Szorc
|
r30434 | |||
/* *** Dependency *** */ | ||||
#include "bitstream.h" | ||||
/* ***************************************** | ||||
* Static allocation | ||||
*******************************************/ | ||||
/* FSE buffer bounds */ | ||||
#define FSE_NCOUNTBOUND 512 | ||||
#define FSE_BLOCKBOUND(size) (size + (size>>7)) | ||||
#define FSE_COMPRESSBOUND(size) (FSE_NCOUNTBOUND + FSE_BLOCKBOUND(size)) /* Macro version, useful for static allocation */ | ||||
Gregory Szorc
|
r30822 | /* It is possible to statically allocate FSE CTable/DTable as a table of FSE_CTable/FSE_DTable using below macros */ | ||
Gregory Szorc
|
r30434 | #define FSE_CTABLE_SIZE_U32(maxTableLog, maxSymbolValue) (1 + (1<<(maxTableLog-1)) + ((maxSymbolValue+1)*2)) | ||
#define FSE_DTABLE_SIZE_U32(maxTableLog) (1 + (1<<maxTableLog)) | ||||
Gregory Szorc
|
r37513 | /* or use the size to malloc() space directly. Pay attention to alignment restrictions though */ | ||
#define FSE_CTABLE_SIZE(maxTableLog, maxSymbolValue) (FSE_CTABLE_SIZE_U32(maxTableLog, maxSymbolValue) * sizeof(FSE_CTable)) | ||||
#define FSE_DTABLE_SIZE(maxTableLog) (FSE_DTABLE_SIZE_U32(maxTableLog) * sizeof(FSE_DTable)) | ||||
Gregory Szorc
|
r30434 | |||
/* ***************************************** | ||||
Gregory Szorc
|
r40157 | * FSE advanced API | ||
***************************************** */ | ||||
Gregory Szorc
|
r30434 | |||
unsigned FSE_optimalTableLog_internal(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue, unsigned minus); | ||||
/**< same as FSE_optimalTableLog(), which used `minus==2` */ | ||||
Gregory Szorc
|
r30822 | /* FSE_compress_wksp() : | ||
* Same as FSE_compress2(), but using an externally allocated scratch buffer (`workSpace`). | ||||
* FSE_WKSP_SIZE_U32() provides the minimum size required for `workSpace` as a table of FSE_CTable. | ||||
*/ | ||||
Gregory Szorc
|
r37513 | #define FSE_WKSP_SIZE_U32(maxTableLog, maxSymbolValue) ( FSE_CTABLE_SIZE_U32(maxTableLog, maxSymbolValue) + ((maxTableLog > 12) ? (1 << (maxTableLog - 2)) : 1024) ) | ||
Gregory Szorc
|
r30822 | size_t FSE_compress_wksp (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize); | ||
Gregory Szorc
|
r30434 | size_t FSE_buildCTable_raw (FSE_CTable* ct, unsigned nbBits); | ||
Gregory Szorc
|
r30822 | /**< build a fake FSE_CTable, designed for a flat distribution, where each symbol uses nbBits */ | ||
Gregory Szorc
|
r30434 | |||
size_t FSE_buildCTable_rle (FSE_CTable* ct, unsigned char symbolValue); | ||||
/**< build a fake FSE_CTable, designed to compress always the same symbolValue */ | ||||
Gregory Szorc
|
r30822 | /* FSE_buildCTable_wksp() : | ||
* Same as FSE_buildCTable(), but using an externally allocated scratch buffer (`workSpace`). | ||||
* `wkspSize` must be >= `(1<<tableLog)`. | ||||
*/ | ||||
size_t FSE_buildCTable_wksp(FSE_CTable* ct, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize); | ||||
Gregory Szorc
|
r30434 | size_t FSE_buildDTable_raw (FSE_DTable* dt, unsigned nbBits); | ||
Gregory Szorc
|
r30822 | /**< build a fake FSE_DTable, designed to read a flat distribution where each symbol uses nbBits */ | ||
Gregory Szorc
|
r30434 | |||
size_t FSE_buildDTable_rle (FSE_DTable* dt, unsigned char symbolValue); | ||||
/**< build a fake FSE_DTable, designed to always generate the same symbolValue */ | ||||
Gregory Szorc
|
r30822 | size_t FSE_decompress_wksp(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, FSE_DTable* workSpace, unsigned maxLog); | ||
/**< same as FSE_decompress(), using an externally allocated `workSpace` produced with `FSE_DTABLE_SIZE_U32(maxLog)` */ | ||||
Gregory Szorc
|
r37513 | typedef enum { | ||
FSE_repeat_none, /**< Cannot use the previous table */ | ||||
FSE_repeat_check, /**< Can use the previous table but it must be checked */ | ||||
Gregory Szorc
|
r43207 | FSE_repeat_valid /**< Can use the previous table and it is assumed to be valid */ | ||
Gregory Szorc
|
r37513 | } FSE_repeat; | ||
Gregory Szorc
|
r30434 | |||
/* ***************************************** | ||||
* FSE symbol compression API | ||||
*******************************************/ | ||||
/*! | ||||
This API consists of small unitary functions, which highly benefit from being inlined. | ||||
Gregory Szorc
|
r30822 | Hence their body are included in next section. | ||
Gregory Szorc
|
r30434 | */ | ||
Gregory Szorc
|
r30822 | typedef struct { | ||
Gregory Szorc
|
r30434 | ptrdiff_t value; | ||
const void* stateTable; | ||||
const void* symbolTT; | ||||
unsigned stateLog; | ||||
} FSE_CState_t; | ||||
static void FSE_initCState(FSE_CState_t* CStatePtr, const FSE_CTable* ct); | ||||
static void FSE_encodeSymbol(BIT_CStream_t* bitC, FSE_CState_t* CStatePtr, unsigned symbol); | ||||
static void FSE_flushCState(BIT_CStream_t* bitC, const FSE_CState_t* CStatePtr); | ||||
/**< | ||||
These functions are inner components of FSE_compress_usingCTable(). | ||||
They allow the creation of custom streams, mixing multiple tables and bit sources. | ||||
A key property to keep in mind is that encoding and decoding are done **in reverse direction**. | ||||
So the first symbol you will encode is the last you will decode, like a LIFO stack. | ||||
You will need a few variables to track your CStream. They are : | ||||
FSE_CTable ct; // Provided by FSE_buildCTable() | ||||
BIT_CStream_t bitStream; // bitStream tracking structure | ||||
FSE_CState_t state; // State tracking structure (can have several) | ||||
The first thing to do is to init bitStream and state. | ||||
size_t errorCode = BIT_initCStream(&bitStream, dstBuffer, maxDstSize); | ||||
FSE_initCState(&state, ct); | ||||
Note that BIT_initCStream() can produce an error code, so its result should be tested, using FSE_isError(); | ||||
You can then encode your input data, byte after byte. | ||||
FSE_encodeSymbol() outputs a maximum of 'tableLog' bits at a time. | ||||
Remember decoding will be done in reverse direction. | ||||
FSE_encodeByte(&bitStream, &state, symbol); | ||||
At any time, you can also add any bit sequence. | ||||
Note : maximum allowed nbBits is 25, for compatibility with 32-bits decoders | ||||
BIT_addBits(&bitStream, bitField, nbBits); | ||||
The above methods don't commit data to memory, they just store it into local register, for speed. | ||||
Local register size is 64-bits on 64-bits systems, 32-bits on 32-bits systems (size_t). | ||||
Writing data to memory is a manual operation, performed by the flushBits function. | ||||
BIT_flushBits(&bitStream); | ||||
Your last FSE encoding operation shall be to flush your last state value(s). | ||||
FSE_flushState(&bitStream, &state); | ||||
Finally, you must close the bitStream. | ||||
The function returns the size of CStream in bytes. | ||||
If data couldn't fit into dstBuffer, it will return a 0 ( == not compressible) | ||||
If there is an error, it returns an errorCode (which can be tested using FSE_isError()). | ||||
size_t size = BIT_closeCStream(&bitStream); | ||||
*/ | ||||
/* ***************************************** | ||||
* FSE symbol decompression API | ||||
*******************************************/ | ||||
Gregory Szorc
|
r30822 | typedef struct { | ||
Gregory Szorc
|
r30434 | size_t state; | ||
const void* table; /* precise table may vary, depending on U16 */ | ||||
} FSE_DState_t; | ||||
static void FSE_initDState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD, const FSE_DTable* dt); | ||||
static unsigned char FSE_decodeSymbol(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD); | ||||
static unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr); | ||||
/**< | ||||
Let's now decompose FSE_decompress_usingDTable() into its unitary components. | ||||
You will decode FSE-encoded symbols from the bitStream, | ||||
and also any other bitFields you put in, **in reverse order**. | ||||
You will need a few variables to track your bitStream. They are : | ||||
BIT_DStream_t DStream; // Stream context | ||||
FSE_DState_t DState; // State context. Multiple ones are possible | ||||
FSE_DTable* DTablePtr; // Decoding table, provided by FSE_buildDTable() | ||||
The first thing to do is to init the bitStream. | ||||
errorCode = BIT_initDStream(&DStream, srcBuffer, srcSize); | ||||
You should then retrieve your initial state(s) | ||||
(in reverse flushing order if you have several ones) : | ||||
errorCode = FSE_initDState(&DState, &DStream, DTablePtr); | ||||
You can then decode your data, symbol after symbol. | ||||
For information the maximum number of bits read by FSE_decodeSymbol() is 'tableLog'. | ||||
Keep in mind that symbols are decoded in reverse order, like a LIFO stack (last in, first out). | ||||
unsigned char symbol = FSE_decodeSymbol(&DState, &DStream); | ||||
You can retrieve any bitfield you eventually stored into the bitStream (in reverse order) | ||||
Note : maximum allowed nbBits is 25, for 32-bits compatibility | ||||
size_t bitField = BIT_readBits(&DStream, nbBits); | ||||
All above operations only read from local register (which size depends on size_t). | ||||
Refueling the register from memory is manually performed by the reload method. | ||||
endSignal = FSE_reloadDStream(&DStream); | ||||
BIT_reloadDStream() result tells if there is still some more data to read from DStream. | ||||
BIT_DStream_unfinished : there is still some data left into the DStream. | ||||
BIT_DStream_endOfBuffer : Dstream reached end of buffer. Its container may no longer be completely filled. | ||||
BIT_DStream_completed : Dstream reached its exact end, corresponding in general to decompression completed. | ||||
BIT_DStream_tooFar : Dstream went too far. Decompression result is corrupted. | ||||
When reaching end of buffer (BIT_DStream_endOfBuffer), progress slowly, notably if you decode multiple symbols per loop, | ||||
to properly detect the exact end of stream. | ||||
After each decoded symbol, check if DStream is fully consumed using this simple test : | ||||
BIT_reloadDStream(&DStream) >= BIT_DStream_completed | ||||
When it's done, verify decompression is fully completed, by checking both DStream and the relevant states. | ||||
Checking if DStream has reached its end is performed by : | ||||
BIT_endOfDStream(&DStream); | ||||
Check also the states. There might be some symbols left there, if some high probability ones (>50%) are possible. | ||||
FSE_endOfDState(&DState); | ||||
*/ | ||||
/* ***************************************** | ||||
* FSE unsafe API | ||||
*******************************************/ | ||||
static unsigned char FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD); | ||||
/* faster, but works only if nbBits is always >= 1 (otherwise, result will be corrupted) */ | ||||
/* ***************************************** | ||||
* Implementation of inlined functions | ||||
*******************************************/ | ||||
typedef struct { | ||||
int deltaFindState; | ||||
U32 deltaNbBits; | ||||
} FSE_symbolCompressionTransform; /* total 8 bytes */ | ||||
MEM_STATIC void FSE_initCState(FSE_CState_t* statePtr, const FSE_CTable* ct) | ||||
{ | ||||
const void* ptr = ct; | ||||
const U16* u16ptr = (const U16*) ptr; | ||||
const U32 tableLog = MEM_read16(ptr); | ||||
statePtr->value = (ptrdiff_t)1<<tableLog; | ||||
statePtr->stateTable = u16ptr+2; | ||||
Gregory Szorc
|
r42237 | statePtr->symbolTT = ct + 1 + (tableLog ? (1<<(tableLog-1)) : 1); | ||
Gregory Szorc
|
r30434 | statePtr->stateLog = tableLog; | ||
} | ||||
/*! FSE_initCState2() : | ||||
* Same as FSE_initCState(), but the first symbol to include (which will be the last to be read) | ||||
* uses the smallest state value possible, saving the cost of this symbol */ | ||||
MEM_STATIC void FSE_initCState2(FSE_CState_t* statePtr, const FSE_CTable* ct, U32 symbol) | ||||
{ | ||||
FSE_initCState(statePtr, ct); | ||||
{ const FSE_symbolCompressionTransform symbolTT = ((const FSE_symbolCompressionTransform*)(statePtr->symbolTT))[symbol]; | ||||
const U16* stateTable = (const U16*)(statePtr->stateTable); | ||||
U32 nbBitsOut = (U32)((symbolTT.deltaNbBits + (1<<15)) >> 16); | ||||
statePtr->value = (nbBitsOut << 16) - symbolTT.deltaNbBits; | ||||
statePtr->value = stateTable[(statePtr->value >> nbBitsOut) + symbolTT.deltaFindState]; | ||||
} | ||||
} | ||||
Gregory Szorc
|
r42237 | MEM_STATIC void FSE_encodeSymbol(BIT_CStream_t* bitC, FSE_CState_t* statePtr, unsigned symbol) | ||
Gregory Szorc
|
r30434 | { | ||
Gregory Szorc
|
r37513 | FSE_symbolCompressionTransform const symbolTT = ((const FSE_symbolCompressionTransform*)(statePtr->symbolTT))[symbol]; | ||
Gregory Szorc
|
r30434 | const U16* const stateTable = (const U16*)(statePtr->stateTable); | ||
Gregory Szorc
|
r37513 | U32 const nbBitsOut = (U32)((statePtr->value + symbolTT.deltaNbBits) >> 16); | ||
Gregory Szorc
|
r30434 | BIT_addBits(bitC, statePtr->value, nbBitsOut); | ||
statePtr->value = stateTable[ (statePtr->value >> nbBitsOut) + symbolTT.deltaFindState]; | ||||
} | ||||
MEM_STATIC void FSE_flushCState(BIT_CStream_t* bitC, const FSE_CState_t* statePtr) | ||||
{ | ||||
BIT_addBits(bitC, statePtr->value, statePtr->stateLog); | ||||
BIT_flushBits(bitC); | ||||
} | ||||
Gregory Szorc
|
r40157 | /* FSE_getMaxNbBits() : | ||
* Approximate maximum cost of a symbol, in bits. | ||||
* Fractional get rounded up (i.e : a symbol with a normalized frequency of 3 gives the same result as a frequency of 2) | ||||
* note 1 : assume symbolValue is valid (<= maxSymbolValue) | ||||
* note 2 : if freq[symbolValue]==0, @return a fake cost of tableLog+1 bits */ | ||||
MEM_STATIC U32 FSE_getMaxNbBits(const void* symbolTTPtr, U32 symbolValue) | ||||
{ | ||||
const FSE_symbolCompressionTransform* symbolTT = (const FSE_symbolCompressionTransform*) symbolTTPtr; | ||||
return (symbolTT[symbolValue].deltaNbBits + ((1<<16)-1)) >> 16; | ||||
} | ||||
/* FSE_bitCost() : | ||||
* Approximate symbol cost, as fractional value, using fixed-point format (accuracyLog fractional bits) | ||||
* note 1 : assume symbolValue is valid (<= maxSymbolValue) | ||||
* note 2 : if freq[symbolValue]==0, @return a fake cost of tableLog+1 bits */ | ||||
MEM_STATIC U32 FSE_bitCost(const void* symbolTTPtr, U32 tableLog, U32 symbolValue, U32 accuracyLog) | ||||
{ | ||||
const FSE_symbolCompressionTransform* symbolTT = (const FSE_symbolCompressionTransform*) symbolTTPtr; | ||||
U32 const minNbBits = symbolTT[symbolValue].deltaNbBits >> 16; | ||||
U32 const threshold = (minNbBits+1) << 16; | ||||
assert(tableLog < 16); | ||||
assert(accuracyLog < 31-tableLog); /* ensure enough room for renormalization double shift */ | ||||
{ U32 const tableSize = 1 << tableLog; | ||||
U32 const deltaFromThreshold = threshold - (symbolTT[symbolValue].deltaNbBits + tableSize); | ||||
U32 const normalizedDeltaFromThreshold = (deltaFromThreshold << accuracyLog) >> tableLog; /* linear interpolation (very approximate) */ | ||||
U32 const bitMultiplier = 1 << accuracyLog; | ||||
assert(symbolTT[symbolValue].deltaNbBits + tableSize <= threshold); | ||||
assert(normalizedDeltaFromThreshold <= bitMultiplier); | ||||
return (minNbBits+1)*bitMultiplier - normalizedDeltaFromThreshold; | ||||
} | ||||
} | ||||
Gregory Szorc
|
r30434 | /* ====== Decompression ====== */ | ||
typedef struct { | ||||
U16 tableLog; | ||||
U16 fastMode; | ||||
} FSE_DTableHeader; /* sizeof U32 */ | ||||
typedef struct | ||||
{ | ||||
unsigned short newState; | ||||
unsigned char symbol; | ||||
unsigned char nbBits; | ||||
} FSE_decode_t; /* size == U32 */ | ||||
MEM_STATIC void FSE_initDState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD, const FSE_DTable* dt) | ||||
{ | ||||
const void* ptr = dt; | ||||
const FSE_DTableHeader* const DTableH = (const FSE_DTableHeader*)ptr; | ||||
DStatePtr->state = BIT_readBits(bitD, DTableH->tableLog); | ||||
BIT_reloadDStream(bitD); | ||||
DStatePtr->table = dt + 1; | ||||
} | ||||
MEM_STATIC BYTE FSE_peekSymbol(const FSE_DState_t* DStatePtr) | ||||
{ | ||||
FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state]; | ||||
return DInfo.symbol; | ||||
} | ||||
MEM_STATIC void FSE_updateState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD) | ||||
{ | ||||
FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state]; | ||||
U32 const nbBits = DInfo.nbBits; | ||||
size_t const lowBits = BIT_readBits(bitD, nbBits); | ||||
DStatePtr->state = DInfo.newState + lowBits; | ||||
} | ||||
MEM_STATIC BYTE FSE_decodeSymbol(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD) | ||||
{ | ||||
FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state]; | ||||
U32 const nbBits = DInfo.nbBits; | ||||
BYTE const symbol = DInfo.symbol; | ||||
size_t const lowBits = BIT_readBits(bitD, nbBits); | ||||
DStatePtr->state = DInfo.newState + lowBits; | ||||
return symbol; | ||||
} | ||||
/*! FSE_decodeSymbolFast() : | ||||
unsafe, only works if no symbol has a probability > 50% */ | ||||
MEM_STATIC BYTE FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD) | ||||
{ | ||||
FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state]; | ||||
U32 const nbBits = DInfo.nbBits; | ||||
BYTE const symbol = DInfo.symbol; | ||||
size_t const lowBits = BIT_readBitsFast(bitD, nbBits); | ||||
DStatePtr->state = DInfo.newState + lowBits; | ||||
return symbol; | ||||
} | ||||
MEM_STATIC unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr) | ||||
{ | ||||
return DStatePtr->state == 0; | ||||
} | ||||
#ifndef FSE_COMMONDEFS_ONLY | ||||
/* ************************************************************** | ||||
* Tuning parameters | ||||
****************************************************************/ | ||||
/*!MEMORY_USAGE : | ||||
* Memory usage formula : N->2^N Bytes (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; etc.) | ||||
* Increasing memory usage improves compression ratio | ||||
* Reduced memory usage can improve speed, due to cache effect | ||||
* Recommended max value is 14, for 16KB, which nicely fits into Intel x86 L1 cache */ | ||||
#ifndef FSE_MAX_MEMORY_USAGE | ||||
# define FSE_MAX_MEMORY_USAGE 14 | ||||
#endif | ||||
#ifndef FSE_DEFAULT_MEMORY_USAGE | ||||
# define FSE_DEFAULT_MEMORY_USAGE 13 | ||||
#endif | ||||
/*!FSE_MAX_SYMBOL_VALUE : | ||||
* Maximum symbol value authorized. | ||||
* Required for proper stack allocation */ | ||||
#ifndef FSE_MAX_SYMBOL_VALUE | ||||
# define FSE_MAX_SYMBOL_VALUE 255 | ||||
#endif | ||||
/* ************************************************************** | ||||
* template functions type & suffix | ||||
****************************************************************/ | ||||
#define FSE_FUNCTION_TYPE BYTE | ||||
#define FSE_FUNCTION_EXTENSION | ||||
#define FSE_DECODE_TYPE FSE_decode_t | ||||
#endif /* !FSE_COMMONDEFS_ONLY */ | ||||
/* *************************************************************** | ||||
* Constants | ||||
*****************************************************************/ | ||||
#define FSE_MAX_TABLELOG (FSE_MAX_MEMORY_USAGE-2) | ||||
#define FSE_MAX_TABLESIZE (1U<<FSE_MAX_TABLELOG) | ||||
#define FSE_MAXTABLESIZE_MASK (FSE_MAX_TABLESIZE-1) | ||||
#define FSE_DEFAULT_TABLELOG (FSE_DEFAULT_MEMORY_USAGE-2) | ||||
#define FSE_MIN_TABLELOG 5 | ||||
#define FSE_TABLELOG_ABSOLUTE_MAX 15 | ||||
#if FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX | ||||
# error "FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX is not supported" | ||||
#endif | ||||
#define FSE_TABLESTEP(tableSize) ((tableSize>>1) + (tableSize>>3) + 3) | ||||
#endif /* FSE_STATIC_LINKING_ONLY */ | ||||
#if defined (__cplusplus) | ||||
} | ||||
#endif | ||||